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PREFACE 

These notes on Analog Simulation have been developed from the experience 
gained by the Education and Training Department of EAI in presenting intensive 
short courses in analog computer operation, programming, and applications 
for nearly a decade. 

The objective of these courses has been to provide scientists and enginee~s 
with a working knowledge of the analog computer and its uses. They have pro­
ven to be most effective when lectures and demonstrations are supplemented with 
laboratory sessions allowing students to put theory into practice. The solu­
tion of problems on an analog computer, using effective and efficient program­
ming techniques and check-out procedures, has proven to be invaluable in gaining 
familiarity both with the machine and its potential as an engineering tool. 

Many of the procedures and techniques described in the notes have been used 
and found to be effective in EAI Computation Centers throughout the world. 

A course in analog computation utilizing these notes could readily meet the 
requirements of an accredited, one semester, 3-credit-hour university course. 
A course in differential equations as a prerequisite is desirable. 

The wide range of application for the analog computer permits the introduc­
tion of actual applications appropriate to courses in all scientific disci­
plines. The EAI Applications Reference Library is a source of a large number 
of such studies describing applications in such areas as electronics, chemical 
processing, aerospace engineering, and life sciences. 

These notes represent the combined efforts of a large number of people within 
the EAI organization. Contribution to the notes and the editing were made by 
A. I. Katz, O. Serlin, H. Davidson, and J. J. Kennedy, as well as many others. 
Many sections in the notes were derived from material generated by the various 
Departments in the Research and Computation Division of EAI. 

The editors, in particular, would like to acknowledge the efforts of the sec­
retarial staff, Helen Lynch, Bette Davis, and Ginny Gafgen in helping organize 
the typing and production of these notes on a time schedule that was agreed 
upon by all as being impossible. 
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CHAPTER I 

THE ANALOG COMPUTER AND ITS ROLE IN ENGINEERING ANALYSIS 

A. Introduction 

The role of the electronic, general purpose analog computer in modern-day 
industry best can be explained by considering the concept of engineering de­
sign. When a design is required, one or more engineers or scientists propose 
a system which they feel 'viIi satisfy the design criteria. Design proposals, 
however, involve approximations and estimates and there may not be concrete 
agreement as to which design is best. Therefore, some form of evaluation of 
the proposed system is desirable. 

In evaluating proposed systems or designs, one can, in general, select either 
of two paths: an experimental program, or an analytical evaluation of the 
system. The experimental approach is usually characterized by a minimum of 
of analysis, the construction of a prototype of the system, and considerable 
"trial-and-error" experimental work. The objectives are to evaluate the experi­
mental data and suggest appropriate modifications which will result eventually 
in an optimum or nearly optimum design. The cost and time required for this 
experimental approach are normally much greater than those incurred in an 
analytical evaluation. In the analytical approach,the task is to derive a set 
of equations (a mathematical model) whose solution will describe the behavior 
of the system in terms of its geometry, time, and parameters. These solutions 
then can be used to obtain operating conditions and parameters which will re­
sult in optimum system performance. 

Since the derivation of mathematical models frequently requires approximations, 
and the results obtained are often based on limited input data, prototype 
experimentation usually is required. However, pilot plants designed on the 
basis of extensive analytical investigations frequently are near optimum and 
require little or no modification. The only experimenta~esults required 
are those which validate the mathematical model. Once the model is validated, 
additional experimentation can be performed analytically, which results in a 
considerable cost reduction compared 'to the experimental approach. 

Not all proposed designs, unfortunately, lend themselves to a choice of evalua­
tion programs. If one cannot obtain a mathematical model, there is no recourse 
except an experimental program. On the other hand, if the cost of a prototyp~ 
is prohibitive (e.g. a nuclear reactor),its design is restricted to analysis. 
The major considerations in selecting the proper evaluation path are a compro­
mise between cost, time, and objectives. 

B. Ma thema ti ca 1 M()'de 1 s 

A system is best described analytically in terms of the causal relationship between 
its component parts, such as one would find on a detailed block diagram of the systen 
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The analyst then can derive equations for each subsystem, and the set of equa­
tions is the mathematical model for the entire system. The individual equa­
tions are derived from basic mathematics and physical laws such as the conser­
vation of energy, matter, etc. and, at times, from empirical and semi-empirical 
equations such as fluid film resistance in heat transfer. The mathematical 
model can be a collection of integral or algebraic equations, although differ­
ential equations are most frequently obtained. 

Typical examples Jf equations encountered in practical applications are: 

1) Algebraic and Transcendental Equations, e.g. the effect of 
temper~ture on physi~a1 properties of materials. Thus 

k = thermal conductivity of a metal = k + aT 
o 

Cp = specific heat of a gas a + bT + cT2 

-A T 
~ = viscosity of a fluid = ~ e 

o 

2) Ordinary Differential Equations, e.g. the kinetics of a chemical 
reaction 

A 2B x 
whose mathematical model is 

and 

COOLANT 
OUT ~ 

HOT 
IN 

dA 
= - k A dt 1 

3) Partial Differential Equations,e.g. a amcentric pipe,heat 
exchanger (Figure I-I) 

h Tt( f ,x) 
Tw (f,x) 

• HOT ~h T2 (ftx) ~ OUT I 

COOLANT 6 4 IN 

Figure 1-1. Simple Heat Exchanger 
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whose mathematical model is 

oT
2 ~T2. 

+ a
2 (T2 - Tw) 0 ~ + V2 ox 

where 
T (t,x) wall temperature 

w 

Tl (t,x) coolant temperature 

T2(t,x) primary (hot) fluid temperature 

Two types of models, linear or nonlinear, are possible and are a 
measure of the complexity of the system. Simple linear models are "nicer" 
since they lend themselves to rapid analytical solutions. Unfortunately, be­
cause of the interaction of physical laws, the need for semi-empirical or em­
pirical equations to des~ribe this interaction, and the nature of most physical 
systems themselves, the majority of the mathematical models encountered in 
practice are nonlinear. This is unfortunate because little is known about the 
analytical solutions to nonlinear equations, and those solutions that are 
obtained are usually difficult to interpret and evaluate. If a system is 
nonlinear, its behavior is a function of its initial conditions, which makes 
its analysis even more essential if optimum performance is desired. 

C. Solving Mathematical Models 

Solutions of mathematical models can be obtained analytically by classical 
methods, numerical methods, or by electronic computation. 

Classical solutions of simple models are possible if the model is composed of 
ordinary linear and/or partial differential equations and certain classes of 
non-linear differential equations. Frequently, this technique can be applied 
to limiting cases of complex models if approximations are acceptable. Analyti­
cal solutions for nonlinear models are rare, and, hence, variable substitutions 
are made to linearize the model as required. Depending upon the model and the 
results required of a study, phase-plane techniques may be applicable. Un­
fortunately, as was previously mentioned, linear systems seldom arise in prac­
tice and classical solutions are usually reserved for limiting cases and linear­
ized approximations. 
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Numerical solutions involve the transformation of a mathematical model into 
a set of algebraic equations by replacing all derivatives in the model with 
appropriate algebraic, finite difference approximations. The resultant set 
of algebraic equations is then solved simultaneously to affect a solution. 
This technique not only is time consuming but may suffer from accuracy, sta­
bility and convergence problems. 

To illustrate the classical and numerical solutions for a differential equa­
tion, consider the problem of a solvent tank (Figure 1-2) which can be filled 
by two feed streams (Ql and Q2) in 4 and 5 hours respectively. Two drain 
pipes, Dl and D2, 

Figure 1-2. Solvent Tank System 

can empty the tank in 3md 6 hours respectively. If the tank is half full 
and all feed and effluent streams are used will the tank fill, empty, or 
reach steady-state? How long will it take? 

The mathematical model for the tank is the nonlinear differential equation 

~ 
dt 

(1) 

where 

y hlh a 
(2) 

The analytical solution of this equation, which can easily be obtained by 
consulting a table of integrals, is, 
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Y dy 
v;-

I 1: J 2f!,dl.l c:t 
0.45-y2 v;:0.45-1-L 

Yo=~ ~o= ~ 

(3) 

or, 

0.9 ln 0.45 -~ + 2([; --{4;) = t 
0.45 -\fY 2 y (4) 

The obvious difficulty in applying this equation is that y, the level in the 
tank, does not appear as an explicit function of time, t. Even though we have 
an analytical solution, considerable effort is still required to produce a 
useful relation between y and t, say, in the form of a graph. The eventual 
height of the solvent in the tank will be the steady-state solution, y , of 
e~ation (1) ( obtainedby letting dy/dt equal zero) s 

y = (0.45)2 = 0.203 
s (5) 

The time required to reach this height in theory is infinite; therefore, a 
practical value of the steady state time must be obtained graphically from a 
plot of y versus t. 

Since the time required to attain the equilibrium height also can be obtained 
from a numerical solution of equation (U, let us now consider this method of 
solution. 

Integrating equation (1) one obtains 

t 

y 0.45 t -f Y 
o 

1: 2 dt +y 
o 

(6) 

where the initial value of y, y is 0.500. Recalling that integration is 
the area under a curve, Figure £-3, equation (6) can be rewritten in terms 
of finite or discrete intervals of time: 

where 

= y + 0.45 nf::. t o 

t = n f::. t 

n=co 

-I f::.t (7) 

n=l 

(8) 

The accuracy of the solution obtained from this equation depends on the magni­
tude of the time interval (accuracy increases as f::. t decreases). 
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FUNCTION 
OF TIME 

0.450 'IIII~=~ __ O~ t 

t, t2 

INTEGRAL 
OF THE FUNCTION 

Y 
1: 
2 

o 

Ij~I!1 ~~~eE UNDER 

• 
ERROR DUE TO 
FINITE APPROXIMATION 
OF INTEGRAL 

----------I!I ... t 

--~~~-------~·t 

Figure 1-3 Illustrations of Numerical Integration 
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Equation (7) is solved in the fol.lm~li ng ,~:rrrrr::" :~:t dEtra:r :.~L 0.~E' c';::~n sele;;.:tecl; 
at say 0.5 hours. 

1) Compute "2 Yn - 1 

2) 

3) 

4) 

5) 

6) 

Compute 

Compute 

Compute 

Compute 

Let n --

0.45 

Yn 

n + 

(Yo ia known and LS U5~: ~s G startj~3 point) 

n~t 

1 and retut'n to f;tep 1. 

Results obtained from both the numerical and .. m.ulytical solutio:ns are shown 
in Figure 1-4. 

y:JL 
ho 

0.5 
t 

o NUHERICAL RESULTS 

o ANALYTICAL RESULTS 

0.4 

0.3 

o 
0.2 --1----______ -=::::~==~==:il=~dd 

o 
2 3 4 4.5 

TIME IN HOURS 

Figure I-4 Numerical Solution of Solvent Tank Problem 
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From the curve shown in Figure 1-4, it is apparent that the tank (Figure 1-2) 
will fill and reach equilibrium in approximately 4.5 hours. It should be noted 
that an increase in the accuracy of the numerical solution would have required 
additional computations and, hence, increased computation time. The same 
procedure would have been followed for a smaller increment of time, ~t. The 
error of the numerical solution is indicated by comparison to analytical re­
sults obtained from equation (4). Computer solutions are best understood 
after an explanation of the type and methods of computer operation is pre­
sented. However, it is convenient to point out at this time that the numeri­
cal solution illustrated above is typical of digital computer solutions and 
the itemized instructions are typical of a digital computer flow chart. 

If one considers a flow diagram for the solution of equation (6), which is 
shown in Figure 1-5, insight to the analog computer solution can be obtained. 
It will be shown later that the analog computer is composed of components 
which perform the mathematical operations described in Figure 1-5. 

f 

0.45 - }: Oo4s!dt 

-
_. 

L y (t ) 

Yo - ---
--

t 

Y I /2( t) [:t -hl/ 2 dt .. -
y"2{t) 

V- --
e 1-5: Flow Diagram of Solvent Tank Figur 

Solution 

At this point, the justification for using computers can be considered. 

In our modern society, machinery of various sorts has relieved human muscle 
from a great deal of routine and repetitive operation. In doing so, it has 
multiplied the effectiveness of that human muscle both in industry and in the 
home. 

The computer has performed a similar service for the mind essentially by 
mechanizing routine mental processes, leaving the mind free to examine new 
problem areas. Studies of the behavior of entire complex systems can ,be 
performed with great speed and, consequently, our actual knowledge of complex 
systems has increased greatly. Equally important, our capacity for control and 
prediction, and for insight into these complex systems also has been extended. 
The inf~uence of the computer on our common life, therefore, lies in its con­
tribution, in the broadest sense, to science and technology. 

Investigations in science and engineering can be carried out on a scale un­
heard of only one or two decades ago. Scientific principles and models can 
be verified against experimental facts at small cost, without hazard and with 
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considerable flexibility. Thus, new areas of scientific knowledge have been 
established and will continue to grow as a result of research and development 
performed on computers. 

D. Computer History and Characteristics 

A computer is a device that is able to receive information (equations, instruc­
tions, data, etc.) and process it in a predetermined manner to obtain useable 
results. 

For example, a human being may be a computer. He can take information in 
through his senses, use principles stored in his memory to process or perform 
operations on this information in many ways, and produce an answer, perhaps 
in the form of an action. 

Similarly, a machine may be able to accept information of a suitable form, 
receive instructions on how to operate on this information, perform the re­
quired operations, and give the answers. Machines may take many forms vary­
ing from simple beads on a frame to the incredibly complex, expensive and 
highly sophisticated modern machines. 

1. Early Computers---The history of computing devices may well extend to the 
very beginning of civilization. For our purposes, they can be divided into 
two categories (see Figure I-6): 

o Mathematical instruments, the more complex of which are known 
as analog computers. These are exemplified in simple form by 
the slide rule. 

o Calculating machines, more often known as digital computers. 
These can be represented simply by the desk calculator. 

Early forms of digital computations could be considered to exist when man 
first started to use his fingers or pebbles for counting. 

The earliest known record of analog computation is its use in surveying and 
map making for the purpose of taxation (Babylonia, 3800 Be). The earliest 
digital machine is probably the Abacus. In its early form, it consisted of 
a clay board with grooves in which pebbles were placed. It later appeared 
in the form of a wire frame with beads. It is still used extensively in Asia 
and the East for remarkably rapid calculations. 

The development of computational aids can be traced from these early instru­
ments through the invention of logarithms, slide rules, linkages, analytical 
engines, and desk calculators to the large-scale general-purpose machines of 
the present day. 

The first large-scale general-purpose digital computer was completed at Harvard 
in 1944. This machine, the Harvard MBrk I Calculator, was built jointly by 
IBM and Harvard, and used electromechanical relays. The Moore School of 
Engineering also completed its all-electronic digital computer for the Aberdeen 
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Figure 1-6 Computer Devices 
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Proving Grounds in 1944. This machine, the ENIAC, ~hich contained 18000 
vacuum tubes, now has many direct descendents. 

Mechanical integrating devices of the late 19th century were improved on 
during World War I, when Hannibal Ford increased the torque output of the 
ball-and-disc integrator and used it to make a naval gun fire computer. 
This was followed by more experimentation in the 1920's. 

At M.I.To, Dr. Vannevar Bush completed the first large-scale mechanical 
differential analyzer in 1931. This machine is now installed at Wayne 
University in Detroit where it is still being used effectively. At the 
present time, there are several large scale mechanical machines in opera­
tion. Simultaneous equation solvers and harmonic analyzers of many types 
also appeared in the 1930's. 

Special computers, in the form of network analyzers for the simulation of 
power networks, appeared around 1925. The network analyzer is a passive 
element analog. A scale model of the particular network to be studied is made 
with resistors, capacitors, etc. The early network analyzers could be used 
to investigate only steady state problems; that is, voltage drops along 
lines, possible current flow in lines, etc. The most recent network analyzers 
can be used to investigate transient conditions during faults on networks or 
switching on networks. These may be considered to be true general-purpose 
computers. 

2. Analog and Digital Computers---In digital computers, numbers are oper­
ated upon directly. The basic operation in these machines is counting. This 
enables the machine to perform the four fundamental operations of arithmetic, 
addition, subtraction, multiplication and division. The basic operation of 
any digital computer is similar to that of the abacus where numbers are repre­
sented by.beads and the counting of these beads is the basis of addition and 
subtraction. In digital computers, all mathematical calculations depend ul­
timately on counting, whether it be beads, gear teeth, or electrical pulses. 

In analog machines, numbers are reoresented by physical quantities whose 
magnitude is determined by the magnitude of the number. Mathematical 
operations are represented by physical events; that is, the machines do not 
count, but perform continuous manipulations equivalent to the mathematical 
operation required. The result of these manipulations is another physical 
quantity, whose magnitude and behavior represents the solution to the pro­
blem. 

Probably the most useful example of the analog computer is the slide rule. 
Here, to multiply one number by another, the discrete numbers are converted 
to logarithms, the logarithms are converted to linear distances on sticks 
which, when placed end to end (i.e. added together--the continuous operation 
in this case), give another length representing the product of the numbers. 
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There exists on the analog a complete analogy between the physical quantities, 
events, and the mathematical numbers and manipulations. If many events are 
taking place at the same time in the physical world, they will also take place 
at the same time, or in parallel, on the machine. An analog device will, con­
sequently, arrive at a result in a shorter time than a digital machine which 
must perform all its operations serially. 

The precision of a digital machine is theoretically boundless. To increase by 
ten the precision of a decimal counting device, it is a matter simply of accomo­
dating one more place (decimal) throughout the equipment. However, to achieve 
the same end on the analog, e.g. the slide rule, the length of the slide rule 
would have to increase by a factor of ten. This is not always practicable. 

Analog devices, are characterized by continuous operations performed in parallel, 
as opposed to digita.l machines which are discrete, 'serial devices. The analog 
solutions are obtained in a continuous manner since all parts of these devices 
operate simultaneously. 

3. General Purpose Analog Computers---We have said that in analog devices 
numbers are represented by physical quantities. Theoretically, any physical 
quantity may be used as long as it can be made to obey those laws necessary 
to represent the mathematical relationships involved in the original problem. 
Purely electrical relationships, which have the mechanical advantage of no 
moving parts and, a high speed of operation, have been found most suitable 
for analog devices. 

The introduction of the operational amplifier made possible the newest class 
of general purpose analog computers using voltages as the 'physical quantity' . 

Lovell of Bell Telephone Laboratories is generally credited with the introduc­
tion of the operational amplifier during the Second World War. These ampli­
fiers can be divided into two groups, those which op~rate on a-c voltages and 
those which operate on d-c voltages. The a-c amplifiers exhibit certain dif­
ficulties and do not lend themselves to any direct form of integration. 
Therefore,only d-c amplifiers are considered in these notes since they are 
most common in comrner~ially available general purpose analog computers. 

E. Industrial Uses of the Analog Computer 

As a result of the tremendous competition in industry following World War II, 
more economical designs and more thorough evaluations were needed. The con­
cept of a fully automated plant, or system, operating at an economic optimum, 
demanded from the engineer a more extensive knowledge of each element, and 
its behavior. The engineers, in turn, demanded a more complete analysis of 
mechanisms and transport properties from the basic research scientists. 

It is important, at this point, to state the range of the computer's useful­
ness, and to delineate those areas where it is not suited. 
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1. Initial Research and Development---The initial work in development 
usually takes place in the laboratory where bench-scale studies, thermodynamic 
calculations of feasibility and other preliminary calculations are made. Be­
cause this stage of the work is so intimately concerned with mechanisms, most 
of which are dynamic in nature, the use of the computer is particularly advan­
tageous. Consider, for example, the determination of chemical reaction velo­
city constants. A series of isothermal batch reactions may be run and data 
collected on the compositions of the various components as functions of time. 
A kinetic model then is assumed, i.e., the orders of the various reactions 
are estimated, and programmed on the computer. 

The problem is one of matching the results of the computer with the data from 
the test runs. Different redction velocity constants can be tried or differ­
ent models assumed until a good match is obtained. In this way, a reliable 
model of the isothermal chemical kinetics is quickly obtained. 

The laboratory work then may be extended to include temperature changes and, 
possibly, other types of reactors. The computer is used in each step to 
simulate the mechanisms, check the model and the assumptions, and obtain 
system param~~ers for design purposes. 

2. Intermediate Development---The use of the analog computer in the prototYPE 
stage of development represents a powerful tool for improving the overall 
efficiency of the development procedure. By combining the philosophy of model 
building with the philosophy of simulation, a complete study of a component 
or system can be obtained. The conditions of optimum operation can be deter­
mined and quickly evaluated over a wider range of variables than is often 
possible with the hardware or plant itself. 

Consider, for example, a development program in which a pilot plant is simu­
lated with an analog computer. In order to achieve a meaningful simulation, 
certain basic facts must be known, and these are found from preliminary pilot 
plant or bench-scale data. Certain heat-transfer coeffici"ents or diffusion 
constants might, for example, be determined from specific tests in the pilot 
unit. The simulation then is checked against normal operating data obtained 
from the plant on the computer where "runs" can be made in a more economical 
fashion. 

Three areas of study thus are defined. In the initial phase of investigation 
it can be seen that the knowledge gained is,perhaps, not inmediately useful 
as design data. The second phase is equivalent to normal operation, except 
that the computer is added and the model obtained. Finally, the parallel 
operation of computer and pilot plant, or prototype,results in a greater 
amount of information at a substantial decrease in cost and time, since the 
simulated plant runs faster than the actual plant and does not require any 
raw materials. 
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3. Final Deve10pment---After pilot plant work is completed, final design 
calculations are undertaken. Most design calculations are based upon a steady­
state type of operation and, hence, are primarily algebraic equations. In 
many such cases--for example, mu1ticomponent distillation calculations, heat 
exchanger sizes and capacities, vessel specifications, structural rigidity, etc.-­
complete digital computer programs have been worked out. In such cases, even 
though the analog is capable of solution, it is obvious that the digital com­
puter should be used if available. 

One of the areas in which the analog computer is particularly applicable is 
the choice of pr~cess instrumentation and control. The large amount of work 
that has taken place in control engineering recently, in fact, is an excellent 
illustration of the fact that, while design may be steady-state, the operation 
of a process is always dynamic. With the analog computer model of a process, 
the interrelation of its various unit operations can be examined easily, suitable 
control systems can be tested, and the proper settings on controllers determined. 
In most cases, the control system itself is simulated; in others, the con­
trollers to be used in the plant are connected directly to the computer. The 
use of the analog computer in such applications is expanding rapidly, and is 
one of the primary means the process engineer has available to improve process 
efficiency. 

The last step in the development of a process is start-up--often a difficult 
and expensive task. If a computer model has been determined, the proper 
values of the flow rates and other variables can be tested under different 
start-up conditions, and the optimum ones selected. In many cases, an appro­
priate start-up procedure for a plant can be determined long before the unit 
is ready for operation. 

4. Post Development Work---After a plant is running satisfactorily, the 
computer model can be adjusted to match the particular idiosyncrasies of the 
unit. 

Further experimentation is than possible with the computer. As with the pilot 
plant, the real plant can be tested for different optimum conditions. The 
economics of the operation can be investigated under changing values of the 
products. The range of operation can be extended to determine some of the 
safety precautions to be observed in the plant. Finally, the computer model 
can be tested for use of the equipment with different materials, reactions, 
etc.,in the event that a changeover ever became necessary. 

It is interesting to note that these suggested areas of application are not 
aimed at replacing with the analog computer important procedures in the stan­
dard process development program. Rather, they supplement the ways and means 
by which decisions can be made. Thus, in the pilot plant simulation, it was 
necessary to retain the pilot plant as a check on the simulation, but the simu­
lation could be extrapolated outside the range of the actual plant capabilities. 

The general program involving the analog computer in the process development 
scheme is characterized by the high rate of information exchange between 
experiment and simulation. Such a program shows a great improvement over the 
usual procedures because at no time does it become necessary for the develop­
ment program to become "boxed in" by previous studies. The computer provides 
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an economical means for the complete evaluation of the investigation, since 
these studies are brought into focus, gaps in data are filled and predictions 
of major importance are obtainable. 

5. Inappropriate Areas for the Analog Computer---As mentioned previously, 
steady-state algebraic equations, can be and have been solved on the analog 
computer. As a general rule, however, large scale algebraic problems are 
better solved with a digital computer. 

In general, problems involving high accuracy are not suitable for the analog 
computer. Some perturbation schemes have been developed for handling problems 
up to five and six places but only certain problems can be solved in this way. 
Under ordinary circumstances, the computer is accurate to about 0.1% for small 
simulations, and, depending on the type of problem, may range from 0.5% to 1.0% 
or more for very large simulations. Most engineering data, however. are not 
that accurate. For example, heat transfer coefficients, and reaction velocity 
constants and modules of elasticity, are usually in the 5% to 20% range of 
accuracy_ Consequently, the computation accuracy is usually not a problem. 

Specific Illustrations of Analog Computer Applications 

The above discussion has been of e general nature. However, a selected 
bibliography of computer applications , categorized by specific industrial 
areas, is presented in Appendix D. 
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CHAPTER II 

THE GENERAL PURPOSE ANALOG COMPUTER 

A. Introduction 

Analog computers have been constructed in a number of forms which, by defini­
tion, appeal to the similarity between the laws of nature. For example, co~­

sider the analogy between mechanical, electrical and thermal systems: 

F =!i dv 
Force Acting on a Mass = g dt 

i C 
de Current Flow Through a Capacitor = = dt 

Q = we dT = Heat Flow into a Solid dt 

The similarity in mathematical form among these expressions, with the addi­
tion of suitable scale factors, allows the heat flow into a solid to be in­
vestigated using an electrical circuit or mechanical system. 

This similarity permits the translation of a problem in a given physical 
system ••• a problem for which computations would be difficult, a system for 
which test models would be expensive and inflexible •• into another physical 
system where relatively cheap models with easily varied parameters can be 
constructed. The physical forms that have been used for models include 
mechanical, hydraulic, electrostatic, etc. By far the most useful and versa­
tile, however, is the electrical system. 

When one uses an electrical system, it is usual for voltages to represent 
the physical variables. Variation of these voltages with time, under the in­
fluence of forcing functions, corresponds directly, through scaling factors, 
to the variation with time of the original problem variables under the action 
of the original problem forces. Models using electrical elements can take a 
number of forms. However, for our present purposes, we shall restrict our 
attention to just one of these forms, namely, the "Electronic Differential 
Analyzer". It is this kind of physical model that normally is implied when 
talking of the general-purpose analog computer (GPAC). 

The general-purpose analog computer is an assembly of electronic and electro­
mechanical components which, individually using d-c voltages as variables, can 
perform specific-mathematical operations. The equations most suitable for 
solution on such a computer .are ordinary differential equations containing 
one independent variable which is represented by time in the computer. Partial 
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differential equations also can be solved py the analog computer using some­
what more advanced techniques than those required for the solution of ordinary 
differential equations. 

Before discussing programming of the analog computer for the solution of 
physical problems, it is essential, for effective use of the computer, that 
a familiarity be gained with: 

and 

1) the principle of operation, and the capability of individual 
computer components 

2) the theory of operation and control of the computer itself 

3) the available computational accessories and readout devices. 

The presentation of this material is the purpose of this chapter. 

B. Differences between Analog Computers 

From Figures II-I, 11-2, and 11-3, it is obvious that analog computers differ 
in physical appearance. The basic differences, however, lie much deeper. 
Computers differ also in: 

1) Capacity ••• the number of computing components 

2) Capability ••• the quality of computing components and the 
operations they perform 

3) Reference Voltage Level .•• the operating voltage range of 
the computer: 

~ 10 or ~ 100 volts is typical 

4) Convenience Factors .•• operator control, the accessibility of 
equipment, and others, some of which are less meaningful. 

Since the basic principles of operation of all d-c general purpose analog 
computers are similar, the material presented in this chapter is applicable 
to any GPAC computing system. 

Modern analog computers are equipped with removable patch panels which contain 
the input, output and control terminations of the various analog components in 
a computer system. The input and output terminations of the components are 
connected in a particular configuration which is defined by the problem being 
solved. The control termination connections depend upon the mathematical 
operation required of a particular component, and the manufacturers method of 
implementing the operating principles of that component. The term "patching" 
refers to the inter-connection of patch panel termination. 

Specific patching information for a particular computing system can be obtained 
from the manufacturer's reference handbook for the computer. 
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Figure 11-1: All-Solid-State, Desk-Top PACE TR-20 Analog Computer 
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Figure 11-2: PACE TR-48 Medium Size Desk Top Analog Computer 
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8860 LINE PRINTER 8875 
STRIP-CHART 

RECORDER 

Figure 11-3: Large-Scale EAr 8800 General Purpose Analog/Hybrid Computer 
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Recommended programming symbols for the various components described in this 
chapter are summarized on Pages 30-31 of this volume. These symbols may re­
quire slight modification to indicate specific component interconnections for 
a particular computing system. 

C. Classification of Analog Components 

Analog computer components, each of which performs a specific mathematical 
operation, are classified either as linear or nonlinear components. The linear 
components perform the mathematical operations of 

1) multiplication by a constant 

2) inversion 

3) algebraic su~tion 

4) continuous integration.; 

These operations are sufficient to solve linear differential equations with 
constant coefficients. 

The mathematical operations performed by nonlinear components are 

1) multiplication and division of variables 

2) the generation of arbitrary functions 

3) the mechanization of constraints and elementary logic operations. 

These components, together with the linear components, permit the analog 
computer to simulate the complex nonlinear systems which occur in practice. 

1 • LINEAR COMPONENTS 

a. Attenuators---Multiplication of a d-c voltage by a 'positive constant 
which is less than unity is accomplished by a potentiometer or pot, 
also called an attenuator. This device, shown in Figure 11-4, is 
simply a fixed resistor with a movable wiper arm. Carbon or wire 
wound resistances which, for greater accuracy, have multiturn wiper 
arms are used in most computers. 

Two types of pots, > "grounded" and "ungrounded r; a re used in modern 
analog computers. These names are derived from the termination at 
the bottom, or "LOri end, of the pot, as shown in the figure. The 
total resistance of a pot is of the order of 2,000 to 30,000 ohms 
and depends on the design of the computer. 

Grounded potentiometers are used in conjunction with a reference 
voltage (a constant voltage source equal to the upper limit of the 
computers operating voltage range) to obtain a fixed voltage less 
than reference voltage, or to multiply a problem variable by a 
constant less than unity. The input to the potentiometer is applied 
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y 

HI 

GROUNDED POT SCHEMATIC 

HI 

k (X-Y)+Y 

RI 
k=--

.RT 
LO 

UNGROUNDED POT SCHEMATIC 

X ---CO ... k
_- kX 

GROUNDED POT 
PROGRAMMER SYMBOL 

X 

HI 

k 

k(x-y)+y 

LO 

Y 

UNGROUNDED POT 
PROGRAMMER SYMBOL 

Figure 11-4: Potentiometer Sche~tic Diagram and PTogramming Symbols 
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Unloaded e In =+IOV I a 0 
....!:... 

Loaded 

If Rwr = 5Kn and Rl = 4Kn, then k = 0.800 

and e = 8.00 volts. 
o 

eln- +IOVlJ----
iL 

---.~ 

If Rwr = 5Kn, Rl = 4Kn, and R L= lOKn, then 

and 

(l1.'R.r) 
k=------= ....... -----

1 + (Rl'~) (1 - Rl'Rr) 

eo 
e = +7.41 volts. Thus, 
o e. 

~n 

Figure 11-5: Potentiometer Loading 
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at its top or "HIli end, and the resultant output is obtained through 
the wiper arm. 

Figure 11-4 shows programmer symbols for both grounded and 
ungrounded pots. 

The ungrounded pot has special applications in addition to the 
attenuation of two variables, indicated in Figure 11-4, which will 
be discussed in later chapters. 

Normally, an analog computer will contain one and one-half as many 
pots as it has amplifiers, and 80% of these will usually be grounded. 

i. Loading and Setting of Attenuators---the potentiometers shown in 
Figure 11-4 are "unloaded" which means that no current is being 
drawn through the wiper arm (i.e. they are feeding an infinite 
resistance-open circuit). Therefore, the mechanical ratio, 
B!/~, which can be set by a calibrated dial, is equal to its 

electrical ratio, e Ie. • However, this is not the case when o 1n 
the infinite load is replaced by a finite load as shown in 
Figure 11-5. 

In practice, the wiper arm of a pot will be 1I1ooking into" a 
load ranging from 103 to 106 ohms since a potentiometer generally 
feeds resistor inputs to operational amplifiers. The effect of a 
lOK* resistive load on a 5K pot set at 4/5 is shown in Figure 11-5. 

In order to eliminate the effects of loading, potentiometers are 
set by monitoring the wiper voltage while the pot is "feeding" 
its normal load. In this way, it is possible to set potentio­
meters to three or four places depending upon the precision of 
the monitoring device. 

In most computers, each potentiometer has switching associated 
with it similar to that shown in Figure 11-6, below: 

TO PRE - PATCH PANEL 
HI TERMINATION 

TO REFERENCE 
VOLTAGE 

HI 

Figure 11-6 

*In these Notes, the follOWing notation is used: 

K = 103, M = 106, m = 10-3 and U = 10-6 
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* 

When the switch is thrown, the patched input to the pot is replaced 
by a reference voltage, and the loaded wiper arm is connected to a 
monitoring device via a readout selector system. The readout device 
can be either a high impedance, digital voltmeter (DVM) or a null 
meter. 

The more sophisticated analog computer systems have digitally-set 
pots. Here, the potentiometer is selected through a pushbutton 
system, and then is set by a servo device also controlled by push 
buttons. 

b. Operational Amplifiers---The operational amplifier is the basic unit 
in the analog computer. It can be used in a "summing mode" to perform 
any or all of the three linear operations: inversion, summation, and 
nrultiplication by a constant. It also can be used in an "integrating 
mode" to integrate a voltage or the sum of a number of voltages with 
respect to time. 

Analog computer programs for investigating the behavior of physical 
systems require some operational amplifiers to be used as integraLors, 
while others are used as "sunnners," "inverters," "high gain 
amplifiers," or in conjunction with special networks to perfonn 
nonlinear operations. Therefore, it is not necessary for all of the 
amplifiers to perform as integrators. In modern analog computers, a 
typical amplifier breakdown would be: 

1) combination amplifiers capable of pe~forming integration, 
su~tion or inversion ••• 30% 

2) sunnning amplifiers capable of performing summation and 
inversion ••• 45% 

3) inverting amplifiers, capable of performing inversion only ••• 25% 

i. Inversion and Multiplication by a Constant ••• to understand the 
principle of the operational amplifier, consider the circuit* 

"4---if 

b 

+ 

Figure II-7. Simple Amplifier Circuit 

In this circuit, the input, e. , surmning junction, eb , and output voltages, 
e , are referred to a referen~R level, such as grouno. However, in the 
igterest of simplicity, future circuits will omit the reference level terminal 
and consider it to be grounded. The gain of the amplifier, -A, will also be 
omitted in future circuit diagrams. 
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where a high gain d-c amplifier (gain = -A) has a feedback resistor, 
~, and an input resistor, ~ (Figure II-7). The d-c amplifier is 

designed so that 

1) the amplifier output) e , is related to the summing junction 
voltage eb , by the gainOof the amplifier (i.e., 

eo = -A eb 
within the reference voltage range of the computer), 

2) the amplifier draws negligible current, ib ~10-9 amps, and 

3) the gain of the amplifier is extremely high, 
usually on the order of 108 at d-c. 

Using Kirchhoff's laws, the nodal current equation at the s~ng junction, 
SJ, is 

or, from Ohm's law, 

i :II: 

b 

Since ib ~, it can be neglected. 

e. + eo = e 
~n 0 

R:r AR:r Ali? 
~ -- e 

e = R:r in 
0 

1 + i (~ + 1) 

Replacing eb by 

e 
0 

~ 

e 
o 

-A 
we obtain: 

Since the ratio of ~ to ~ usually is less than thirty, and A is much 

greater than 1, 

e 
o 

= ~ 
-~ 

e. (1) 
~n 

From this equation we can see a most important character.istic of the 
operational amplifer: The input-output relationship is solely dependent 
on the ratio of the feedback to the input impedances (resistances). 

Using this equation as a basis for discussion, some of the various uses 
of the operational amplifier can be illustrated. 

When both resistors are of equal magnitude, R, the amplifier output 
voltage has the same amplitude as the input voltage but is of the 
opposite polarity. Thus, the mathematical operation of inversion is 
p~rformed: 
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e 
o 

e. 1n 

If the resistors are not of equal magnitude, the result is multi­
plication of the input by a constant. For example, if ~ were 1M 
and Rr were lOOK, 

e 
o 

~ 
= - -- e 

RI in 
= 1M = _ 10 

- o.lM e in 

or. if the resistance ratio is inverted, 
e. 1n 

eo = - ""!O 

e. 
1n 

ii. Summation---the addition of two parallel input resistors to the previous 
circuit, yields RF 

'I .-----~~--------~ 
RI i l • 4--if 

R2 12 
iln 

• -+ 
eo 

R3 i3 
SJ 8b --+ • Ib 
Figure II-B. Summing Amplifier Circuit 

82 ------~~----------~----~.---------~ 

And, the SJ node equation, 

i1 + i2 + i3 + if - ib = 0 

Using Ohm's law, this equation becomes 

e
l - eb + e2 - eb + e3 - eb + e - eb 0 

- ib O. = 
~ R2 ~ Rf 

Since eb and ib Qo< 0, we have 

eo = - [~ e1 + ~ e2 + ~ e3 ] • (2) 

If the number of input resistors is increased t~ say, N, the generalized 
summer equation becomes 

(3) 
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iii. Integration---when the feedback resistor used in previous circuits 
is replaced by a capacitor, the amplifier circuit for- a single 
input .becomes (Figure 11-9) 

-gIC 
1 RI 

SJ 
reb ~ if 

ein - ¥.I\; -eo 
---. iin --;-+ 

Ib 

Figure 11-9. Simple Integrator Circuit 

The relations among capacitance, voltage drop, and current for 
a capacitor with no initial charge is: 

e = ~ r i dt 

o 
Thus, the voltage drop, eo - eb , across the feedback capacitor can 

be expressed as 
t 

eo - eb = ~ 1 if dt 
o 

which can be differentiated to obtain an equation for if 

if = o£t ( eo - eb ) 

A current summatimat SJ (eb ::.(), 'ib:::aoQ) is now 

whose solution is 

e. de 
1n + ~ = 0 11: dt 

e o = - e. dt. 1n (4) 

We now have a device which can perform the operation of integration 
(with respect to time) on an input voltage. 

For multiple resistor inputs, the integrator output is described by 
the equation: 

+ ----- + ~~] dt (5) 

It should be noted that the amplifier output voltage in this instance 
is the integral of the algebraic sum of the input voltages. 
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iv. Generalized Amplifier Equations---if one defines the impedance, Z, of: 
a passive element as 

Z = E 
I 

where E is the voltage drop across the element, and I 
current passing through it, the input-output expression for 
generalized circuit (Figure II-lO)is: 

e 
o 

ZF 
Z e. • I ~n 

SJ 

is the 
the 

Figure 11-10: Generalized Amplifier Circuit 

For a multiple input amplifier circuit (Figure II-II), 

SJ 

J 

Figure II-II: Generalized Multiple Input Amplifier 
Circuit. 

*For simplicity further reference to ei(t), Z.(t), etc. will be considered 
as functions of time and will be noted simply~as ei, Zi etc. unless indi­
cated otherwise. 
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the input-output relationship is 

e 
o 

n=N 

n = 1 

e 
n 

The impedance of a resistor is equal to its resistance in ohms 

~ = R. 

(6) 

(7) 

The impedance of a capacitor is time dependent. 
voltage drop across a capacitor is 

Recalling that the 

t 

e = 1 c S i dt 
o 

and defining the operators 
t 

P .5 d~ and 1 - J 
p 0 

dt, the 

relation between voltage and current for a capacitor is 

e = ..!.. 
pC 

Since impedance is defined as the ratio of voltage drop to c~rrent, 
the capacitor impedance is 

= 
1 
~ 

(8) 

v. Programming Symbo1s---before illustrating the programming symbols 
for the circuits just presented, it is important that one realizes 
how amplifiers and their associated passive elements are packaged 
in modern day computers. Each amplifier has l associated with it an 
input network (resistors) and a feedback capacitor and/or resistor. 

The input resistors are not equal in magnitude. Normally, one 
finds the input network containing from four to six resistors of 
two different magnitudes. For example, a six resistor input 
network may have three O.lM and three 1M resistors. 

The symbol used for a high gain d-c amplifier is simply 
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An inverter 

R 

e. 
In >--... --eo 

whose overall gain is unity because it has identical input and feed­
back resistors, is denoted by the programming symbol 

e in --I ..... C>>---- eg 

If the passive elements were not identical the symbol would be 

• Rf 
where G is the resistance rat~o ~ • 

In the case of summing amplifiers which can have multiple inputs, 
the programming symbol is 

~ 
where G1 = R ' 

I 

~ =-
R • 3 

The symbol for an integrator, where G = l/~C , 
c 

differs from that of a summer by a small rectangle which is adjacent 
to the base of the triangle. For mUltiple inputs, the symbol for an 
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integrator becomes: 

where Gl = 

.. -~ 
-2----' 
e3-........ ~ 

111 
R C' G2 =~, and G3 = R C· 
123 

The V input to the top of 
o 

the integrator represents the initial value of e , or initial charge on 
o 

the feedback capacitor, which will be discussed in the next section of 
this chapter. 

Finally, one may have occasion to use a high gain amplifier with an 
input network but without a feedback element 

RI 

'2 --.J\,fV'Ilr-~ 
This is commonly represented by the 

>---'0 

symbol 

G1c> 'I G
2

( >-__ 
82---...... 

where Gl and G2 are inversely proportional to the size of the input 
resistors. 

To coordinate the packaging of amplifiers and passive elements with 
the symbols just presented, it must be realized that the input termi­
nations of the input networks usually are not labeled with the magni­
tude of the input resistors. They are labeled, rather, with gain 
factors which are based on standard feedback resistors and capacitors 
selected by the computer manufacturer for a specific computer system. 
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For example, consider the input or patch panel terminations for a 
PACE TR-48 computer shown in Figure 11-12. Each input labeled 10 
is a 10K resistor. and each input labeled 1 is a lOOK resistor. 
Therefore, the standard feedback resistor for this system must be 
lOOK. 

It follows, then, that if this notation is to be used throughout 
this computing system, the standard integrating capacitor must be 
10 ~f (l/RC = 1, 10 for lOOK and 10K input resistors respectively). 
Patching details are a furic tfon of the specific computer. 

10 

10 
10K 

Figure 11-12: Summer Amplifier Patching 
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vi. Drift 

e" I -.. 

D-C amplifiers show a tendency to drift.* That is, the output does 
not necessarily remain steady and, in particular, does not necessarily 
remain zero for zero input. This is due to changing characteristics 
within the amplifier and, particularly, to changes in the first stage 
of the amplifier. It is a most undesirable feature and can lead to 
serious errors. To compensate for drift which might occur (i.e., to 
stabilize the d-c amplifier,) an a-c amplifier is used as shown in 
Figure 11-13. 

I Zf 

l' I 
if 

ZI i· ib D-C ·0 I - - AMPLIFIER 'r. 
IS I 

4", A-C 
STABILIZING -. .A.A .... - "'''':..1-

-L AMPLIFIER 

'T -
Figure 11-13. 

The effect of the a-c stabilizer is to increase the overall d-c' gain 
of the amplifier and further attenuate the drift of the operational 
amplifier by a factor equal to the gain of the a-c amplifier. 

vii. Overload Indication -- If the amplifier is overloaded (required out­
put current or voltage is greater than design capabilities, eb l 0, etc.) 
the overload signal connected to the output of the a-c amplifi.er is ex­
cited. This overload indicator ensures that the computer is not used 
when errors exist due to operating the amplifiers beyond their capa­
cities. 

* For a complete analysis of stabilization of the d-c amplifier, 
see "Introduction to Analogue Computers" by C.A.A. Wass, pages 
76-89. 
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c. Computer Mode Controls -- The operator controls the mode of operation 
of the analog computer from push buttons or switches located on the 
control panel of the computer. The modes of computer operation are 
classified as follows: 

comEutational modes 

Pot Set (PS) 
Reset (RS or IC) 
Hold (HD) 
Operate (OP) 

check modes 

Static Check (ST) 
Rate Test (RT) 

slave modes 

Slave (SL) 
Tape (TP) 

special 

Repetitive Operation (RO) 

A mode control panel which incorporates most of these modes is shown 
in Figure 11-14. 

The Operate, Hold and Reset modes are the basic modes required for 
operation of an analog computer. The additional modes mentioned 
above are for operator convenience in large computing systems. 

i. Integrator Control Switches ~analog computer control is accomplished 
by switches in the integrator circuitry since the integrator is the 
only dynamic element in the computer. All other components are 
static in the sense that their output is directly related to their 
input at all times. A simplified schematic diagram (Figure 11-15) 
of an integrator includes input, feedback and initial condition 
(I. C.) networks, as well as Operate/Hold and Reset (I. C.) switches. 

The IC switch is used to charge the integrator capacitor 
through the I. C. network to introduce an initial condition on 
the output of the integrator. The operate-hold (OP-HD) switch, 
in effect, starts and stops integration since problem variables 
can not be summed and integrated unless the input network is 
connected to the amplifier. Note that this switch separates the 
inputs ei to the amplifier from the input terminal, b, of the 

d-c amplifier. 

Referring to Figure II-16, consider the modes of operation and 
switch positions. 
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Figure 11-14: MOde Control and Signal Selection Panel (EAI 8800 Computer) 
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Figure 11-15: Simplified Integrator Schematic 
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Figure 11-16: Integrator Mode Control 
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ii. Pot Set Mode -- to solve a problem on the analog computer the 
operator first must introduce the system parameters by setting 
attenuators. In most computers this is done in the pot set mode; 
however, in a few computers this function is performed in the 
reset mode. In the pot set mode, either the reference voltage 
terminals on the patch panel are de-energized, or the amplifiers 
are set to zero gain. 

In pot set, the IC switch is connected to the input of the d-c 
amplifier, and the summing junction of the input network is 
grounded through the OP-HD relay. This allows the attenuators 
to be set "looking into" their respective loads. 

iii. Reset Mode -- the purpose of the reset mode is to introduce initial 
conditions on the integrator outputs. This can be done only if 
the IC voltage, eIC' is connected to the amplifier; therefore the 
IC relay must change position. The OP-HD switch remains in the 
same position since problem solution is not required at this time. 

In the IC mode, the integrator circuit becomes (Figure 11-17) 

R R 
·ICo--J~~--"--~~--~ 

>--.. _80 

c 

Figure II-17: 

The input network is not shown as it is not physically connected 
to the amplifier in this mode. 

The initial condition circuit is solving the equation: 

= 

where e IC is a constant voltage and G = ic. The solution of this 

equation is 

( -tIRe) 
=-e I - e ·IC 

indicating that the output voltage equals the 

(9) 

negative of the initial condition voltage after 10 RC time 
constants (t = lORC, e -10~0). This time constant is usually 
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0.1 seconds, (G = 10); therefore, -eIC appears at the 
amplifier output in less than one second. 

iv. Operate Mode -- in the operate mode, the OP-HD switch closes and 
the integrator operates in the normal manner. In this mode, 
the IC switch must return to the ground position to remove the 
IC input, and the IC voltage does not affect the integrator out­
put in the operate mode. 

v. Hold Mode -- in practice, it may be necessary to stop a problem 
solution, obtain intermediate results, and then complete the 
solution. Therefore, a capability of stopping the solution of 
a problem without destroying or losing eo is desirable. This is 
accomplished by disconnecting the input network. Since the 
integrator input is zero, the amplifier output in hold is stored 
on the feedback capacitor, and will be constant. 

The capacitors used in analog computers should be of very high 
quality to minimize "leakage" effects on the amplifier output 
voltage. 

vi. Static Test MOde -- the static test mode is similar to the reset 
mode with one exception; special 'reference voltage" terminations 
on the patch panel are energized in this mode only. Their 
purpose is to provide initial condition voltages for checking 
purposes for integrators, whose initial-condition voltages are 
zero. 

After a problem is mechanized"on the computer, a static check (to 
be discussed in a later chapter) is performed to insure that the 
patching, etc. are correct. 

A zero voltage is not a valid check, however, and, therefore, all 
integrator outputs must have initial condition voltages. If, as 
in the case of many analog computers, no static test mode exists, 
the static check can be performed in the reset mode. Here, one 
must connect integrator initial conditions to reference voltage 
sources physically and disconnect them after the check has been 
completed. 

check amplifier 

In performing a static check, it is necessary that the net sum 
of the input voltages to all integrators be available. (i.e. the 
derivatives of variables). Consider an integrator in the reset 
mode (Figure 11-18): 
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Figure 11-18: Integrator Circuit in the Reset MOde 

The following operations must be performed to read the check 
point (derivative) on an integrator: 

1) the integrator summing junction ground (through the op­
HD switch) must be removed; 

2) the summing junction must be connected to the input (b) 
of the check amplifier which has its own feedback resistor; 

and 

3) the output of the check amplifier must be connected to a 
voltmeter. 

The implementation of these operations is either manual, which 
places the entire burden on the operator, or automatic, which is 
implemented by relays through a pushbutton selector system. 

A choice of check amplifier feedback resistors is usually avail­
able to the operator by switching, so that he has a choice of 
feedback resistors. In the circuit shown in Figure 11-19, the 
feedback resistor, R, is equal in magnitude to a gain one inte­
grator input resistor. 
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Figure 11-19: 

The necessity for being able to select the proper feedback resistor 
is best understood by recalling that only the amplifier outputs 
must be kept within the reference voltage range of the computer. 
The net sum of several integrator input voltages could be much 
greater than the maximum permissable amplifier output voltage. 
Since the check amplifier output is subject to the same limitations 
as the other amplifiers in the computer, some check amplifier output 
voltages (known as check points) will require either amplification 
or attenuation. 

vii. Rate Test Mode -- the purpose of the rate test (RT) mode, which 
is found only in the more sophisticated and costly analog computers, 
is to check the integration rate of all the integrators in the 
computer. For maximum solution accuracy, all integrators must 
integrate at the same rate. 

In the rate test mode, all integrators are·fed from a common 
voltage source, through a grounded potentiometer called a rate 
test pot, to a gain "one" input on all integrators. The initial 
condition voltage of the integrators is zero (Figure 11-20). 

There are no open switches between the voltage source and the 
integrator inputs (including the operate-hold switch) to eliminate 
switch closing - time as a factor in determining integration rates. 

In performing a rate test, one normally observes the output of ~ 
integrator on a DVM and integrates alternately in a positive and 
then a negative direction (using the three-position switch and the 
rate test pot) before removing rate test pot input (center position 
of the switch). All integrator output voltages are then monitored 
to determine whether or not the capacitors require adjustment. 
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Figure 11-20: 

viii. Slave Mode -- the slave mode is used when more than one computer 
console is required in a simulation. If this is the case, all 
consoles must change modes simultaneously. 

One console is designated as the "master" console. Its mode 
control will govern the remaining consoles which are known as 
"slaved" consoles. 

To slave computers to a master console, one must perform two 
operations: 

1) put the slaved computers in the slave mode, and 

2) using a mUltiposition switch, select the master console on 
the slaved computers. 

The latter function presumes a large, multiconsole installation. 
In the case of smaller installations, sa~ two desk-top, transis­
torized computers, the multiposition switch is replaced by an 
interconsole cable which must be connected by the operator. 
The slaved computer still must be put into the slave mode. 

ix. Tape Mode -- the tape mode is used on large analog computers to 
permit computer operation to be controlled from paper or magnetic 
tape. Th~ feature is very desirable in a multishift computer 
laboratory for quickly setting potentiometers and diode function 
generators (using servo-set pots). 

Details regarding tape input are beyond the scope of these notes. 
However, additional information may be obtained from the reference 
handbook for a specific model computer. 
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Figure 11-21: Linear Component Circuits 
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d. Linear Component Summary -- To summarize linear components, several 
simple circuits are presented in Figure 11-21. It should be recalled 
that 

1) voltages mayor may not appear at the outputs of amplifiers in 
the pot set mode (depends on the computer model); 

2) voltages undergo a sign inversion when passing through an 
amplifier; 

3) the gains of input resistors are their relative magnitudes, when 
no feedback resistor is present. 

2. NONLINEAR COMPONENTS 

a. Multipliers ---To gain an appreciation for the computational capability 
realized by being able to multiply two time varying voltages, consider 
a "black box" multiplier. 

:----~~---.. ~ 
This multiplier accepts two inputs. x and y and produces their 
product. 

-44-



DIVISION 

-y---~ 

---x 

SQUARE ROOTING 

-x------t 
>--.... _eo 

eo2 

Figure 11-22: Mathematical Operations Performed Using Multipliers 

If the multiplier is put into the feedback loop of a high gain 
amplifier, the inverse of multiplication, i.e. division, of two 
voltages can be accomplished (Figure 11-23). 

-y---....-, 
R 

x x 

Figure 11-23. 
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Since the sum of the currents feeding the SJ of the amplifier 
through the two input resistors must be zero 

or 

e 
o 

R 

= • (~) i = .. 
y 

X 

One also can obtain the square root of a voltage using a mUltiplier 
in the feedback loop, as indicated in Figure 11- 22 

Two principles of computer component operation which have been presented 
here are worthy of comment. They are: 

1) inverse operations are performed by placing the nonlinear 
component in the feedback loop of a high gain amplifier, 

and 

2) implicit algebraic operations, where the sum of the input 
currents is zero, are performed when a high gain amplifier 
is used for inverse operations. 

The remainder of this section will be devoted to explaining the 
operation of the two types of multipliers commonly encountered in 
computing systems. They are: 

1) servo or electromechanical mUltipliers 

2) electronic or quarter square (QSM) multipliersol 

i. Servo or Electromechanical Multipliers -- the operation of the servo 
mUltiplier can be explained best by considering Figure 11-24 which 
is a schematic diagram of a typical servomultiplier. The servo 
amplifier unit, an a-c amplifier, containing an electromechanical 
vibrator or "chopper", accepts two inputs of identical 
polarity, x and ef, and, using the "chopper',i converts the difference 
between these voltag~s into an a-c error voltage. The error voltage 
is amplified and fed to the windings of a two phase motor which is 
connected to a potentiometer shaft by a gear train. 

If the error voltage is positive, the motor will rotate the shaft in 
a positive direction; for a negative error signal in a negative 
direction. An audio and/or visual overload alarm is activated by the 
amplified error signal fed to the motor windings when the error 
signal is excessive. 
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To clarify the positive and negative directions, consider the shaft 
driven by the motor and gear train. On this shaft are several wiper 
arms which are aligned mechanically. They are not connected 
electrically. Each of these wipers rotates inside a cylinderical 
wire wound resistor. One of these resistors (often called "cups",) 
is referred to as the "follow-up" cup, and the rema~n~ng resistors 
are known as "multiplying" cups. The positive direction refers to 
the plus (+) end of the cups, and the negative direction refers to 
the minus (-) end of the cups. Note that the cups each have a 
centertap. 

SERVO 
AMPLIFIER 

SERVO 
MOTOR 

e= error signal 

--T------------------, I . 
I I 
I +Y VOLTS I 
I I 
: + I _ X 

~--...... - ...... 80-y­

REFERENCE OR 
FOLLOWUP CUP 

MULTIPLYING 
CUP 

-Y VOLTS 

Figure 11-24: Schematic Diagram of a Servo-Mechanical Multiplier 

To illustrate how a servo multiplier operates, assume that the input 
voltage, x, shown in Figure I1-24, is constant. When e = 0, 

= x. 

Note that = 

where k is the fraction of the "follow-up" cup resistance between 
the centertap and +e

R 
termination. Solving for k yields 
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Therefore, the voltage at el' the intersection of Rl and R2 , would be 
negative. Since the base, b, of the amplifier is at zero potential, 
the diode will not conduct because its plate voltage, e1 , is negative 
with respect to the cathode, and it acts as an open switch. 

As x becomes more positive, el becomes less negative until it reaches 
zero volts. With a further increase, the plate potential of the 
diode is greater than its cathode potential and it conducts,a110wing 
a current flow to the grid of the amplifier. A voltage appears at the 
amplifier output which is proportional to -x. 

If x were negative, e1 would always be negative and the diode would 
never conduct. However, if the bias voltage (-e

R
) and the diode were 

reversed, a negative input voltage would enable the diode to conduct. 

Referring to Figure II-26, a function can be approximated by using a 
circuit containing a number of diode/resistor networks. The form of the 
function is governed by the selection of the bias resistors, Rl to Rn' 
and the sum of the currents is 

if = i 1 + i 2 + i 3 + + i 
n 

= 
-f (x) 

RF 

(The nonlinearity of the diodes results in rounded rather than sharp 
breakpoints.) 

Note that a potentiometer should never feed directly into a diode function 
generator since its load would be continually changing. 

Common types of fixed DFG's are: x2 , x4, log x, 1/2 log x ( = log ~), 
and sin x/cos x. The sinusoid generator differs somewhat from the others 
in that it uses diode switching in the feedback path while the others 
use diode switching in the input path. 

The conventional programming symbol for a fixed function generator is 

f(x) 

where FB, INand 0 denote patching notation characteristic of a specific 
computer system. Some function generation devices of this type require 
two external amplifiers; this, again, is dependent on the particular 
computer used. 
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QSM operation 

A QSM, simplified diagram is shown in Figure 11-27, uses four x2 diode 
function generator circuits; however, only two of these circuits 
operate at any given time. The multiplier requires two plus and two 
minus circuits to provide four quadrant multiplication; therefore, card 
operation depends on the polarity of the input voltage. Referring to 
Figure 11-27, and recalling that the circuits have a fixed bias voltage, 
the currents are subject to the following constraints: 

x i l 
MINUS --. 

SQUARING 

y CARD 

"--

i2 RF PLUS 
SQUARING ---. - -'\IV\, 

CARD 4-iF - i ---. 
-(Z + Xy) 

MINUS i3 .. > 
SQUARING ---+ ~RF 

CARD 

-y 

~ Z 

PLUS 
SQUARING 

i4 CARD --+ -x 

Figure 11-27: Simplified Schematic Diagram of a Quarter Square 
Multiplier. 
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4 RFeR 

0 . . . 

o 

(x + y2 2 

4 RF~R 

o 

• • • • • • • • • • • • if x + y > 0 

. if x + y < 0 

if x - y < 0 

if x - y > 0 

• • • • • • • • if (x + y) < 0 

. . . . . . . . . if x + y :> 0 

• • • • • ••• iJ; (x - y) > 0 

o • • • • • • • • • • • • • • if (1C - y) < 0 

Since the output amplifier of the multiplier has a feedback resistor, 
another input can be summed to the output product by selecting the proper 
input resistor. This input can be fed by a potentiometer because the 
load is fixed. 

Note that the current sum from the cards is 

i = ~ 
eRRF 

for normal operation. Replacing the normal feedback resistor with a 
resistance R< ~ attenuates the xy product. 

i + if = 0 
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The product may be amplified by introducing a potentiometer, a , bp.tween 
the amplifier output and the normal feedback resistor, RF~sO that 

eo ~ 
0( eR 

where ex is less than one. 

The prograrrnning symbol for a QSM is 

+X -X 

+y 
-xv 

-y 

where A through F represent patching terminations appropriate to a 
specific computer. Note that the amplifier feedback resistor is not 
indicated; in most computers it is included with the four squaring cards. 
In this instance,the feedback path is a resistor connecting 'the E and F 
terminations. 

In most modern analog computers,the multiplier is simply the squaring cards 
and feedback resistor, which means that anywhere from one to three 
additional amplifiers are required per multiplication. One amplifier is 
required to sum currents and output the product ; ~he number of 
additional amplifiers depends upon the. availability of +x, -x, +y, and 
-y (all four inputs are required).' Many analog computers have mUltipliers 
with two internally packaged amplifiers, which requires only three 
inputs. Computer manuals, reference handbooks, etc., should be consulted 
for further information and programming symbol and notation. 

The QSM output amplifier, like all amplifiers in a computer system, has 
its own visual and/or audio overload alarm. 

iii. Choice of Multiplier--there is often a need to de.cide which type of 
mUltiplier to use and the specific circuit wh.ich will best meet the 
problem requirements. Some of the advantages and disadvantages of 
the different types are: 

Advantages Disadvantages 
Servo - Mechanical - Single Turn Potentiometers 

a) is simple and robust 
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b) does not require additional 
amplifiers 

2) granularity of windings limits 
resolution 

c) can give, per unit, products of a 
number of variables with one other 

NOTE: requires care in programming 
to minimize the effect of 
servo dynamics in circuit 
loops. 

d) with tapped potentiometers and a 
padding unit, can be used as a 
function generator 

Servo - Mechanical - Ten Turn Potentiometers 

e) resolution is improved by factor 3) 
of ten compared with single turn 
device 

gains resolution at the expense of 
response which is decreased by a 
factor between 5-10 

a) 

b) 

Quarter Square Multiplier 

1) has higher frequency response 
than servo type (essentially flat 
to several Kcps) 

'2) 
can give up to three separate mul­
tiplications per unit, depending 3) 
on model. 

may be limited by phase error when 
working beyond I Kcps 

requires external operational 
amplifiers 

may require care in programming to 
minimize effect of static error 
and noise for low voltage inputs 

A consideration of the above factors, should serve only as a guide as 
to which type o.f multiplier would be best suited toa specific task. 

b. Resolvers--The primary function of resolvers in a computing system is to 
generate the sine and cosine of a variable, convert variables from rectangular 
to polar coordinates (or polar to rectangular), and rotate axes in a two 
dimensional system. The mathematical relationships required for coordinate 
transfo~ation and axes rotation are shown in Figure 11-28. 

As in the case of multipliers, two types of resolvers are available: servo 
or el.ectromechanical, and electronic. However, resolvers differ from 
multipliers in the form of their input which can be either an angular 
position or the derivative of the angle (rate resolver). 

i. Servo-Resolver--A servo-resolver is an electro-mechanical system that 
operates in a manner similar to that of the servo multiplier. The 
linear mUltiplying potentiometers of the mUltiplier are replaced by 
potentiometers that are 'hhaped"to produce a sinusoidal variation in 
output voltage as the wiper sweeps across the potentiometer. 

A simplified diagram of a typical servo resolver (in the PR mode) is 
shown in Figure 11-29 (note the similarity to the servo multiplier). 
The shaft of the servo motor is positioned as a function of the in­
put, Q, by the feedback system. The linear follow-up cup provides the 
necessary feedback to null the input to the servo amplifier. Also 
attached to the motor shaft are wipers that travel along the shaped 
sine-cosine potentiometers. 
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Figure 11-28: The Mathematical Relationships Required for Resolution 

-59-



+ 

e 

x= R Sl~ e 

y= R cos e -. 

FOLLOW UP CUP 
WITH TRIMMERS 

(+90) +100 

Y=R SIN 91 

X: R COS 9. 

GEOMETRICAL REPRESENTATION 

OF RECTANGULAR CONVERSION 

\)v-.-e - 100 

SHAPED SINE-COSINE POTENTIOMETER -I 
I _. - - - - or- - '"':" - -

liP 

1"""IIii~ ______ 2 ... - R -.,. _ -

3 

II 

----4-4e+R --"- - --- 9~ 
I 

5 I 

LINEAR 
MULTIPLYING CUP 

+A 

e SINE CUP WIPER 

OUTPUT 

+.!! O-~----'----~ 
so 

-A 

Figure II!'"29: Simpli.fied Diagram of Servo Resolve\' ip Polar-Recta'11gular (PR) 
Mede Inputs ± R & Q; Outputs x & y 

-60-



follow-up cup, sine-cosine cup 

The sine-cosine cup is a circular, wire-wound resistance element with 
four tapsspaced"90 degrees apart. Therefore, points "1" and "s" in 
Figure 11-29 represent the same electrical tap. The wipers are spaced 
90 degrees apart; therefore, the outputs are R cos Q and R Sin Q. If 
the polarity of the inputs to points "2" and "4" are reversed, the 
signs of the resolver outputs are inverted. 

Since the resolver outputs are obtained from potentiometers, they are 
subject to loading errors. These errors cannot be compensated for by 
loading the follow-up cup and sine-cosine cup with equal resistance, 
because one pot is linear while the other is non-linear. Instead, the 
sine-cosine cup is wound so that it has the correct output when working 
into a specific load. The follow-up cup does not require an external 
load in the resolver mode. 

The follow-up cup is equipped with trim pots so that the maximum available 
feedback voltage is ±90 volts. Thus, the input voltage representing Q 
should not be allowed to exceed +90 volts. When the servo system is 
equipped with mechanical stops. these can be positioned to limit the wiper 
of the sine-cosine cup as the input voltage ranges from 
-90 to +90 volts. "In this case, the input scale factor for Q is one volt 
per two degrees, allowing Q to vary between ±1800 • If the system gearing 
and mechanical stops are arranged so that the wiper of the sine-cosine 
cup makes ten revolutions as the input voltage ranges from -90 to +90 
volts, the input scale factor for Q is one volt per twenty degrees, 
allowing Q to vary between ±18000 • 

A servo resolver in the Rectangular (Polar-Rectangular, PR) mode is simply 
a position servo equipped with a non-linear mUltiplying cup. Hence, 
linear potentiometers can be added so that mUltiplication can be performed 
with the unit servo multiplier. Figure 11-29 shows a linear cup (poten­
tiometer) whose output is + AQ/l-OO. Note that since Q is limi ted to ±90 V, 
the multiplying cup product is limited to 

AQ 
90 

The servo resolver chassis normally has a neon lamp overload indicator 
that will light whenever the servo tracking error exceeds the allowable 
limit. Also located on the front of the servo resolver chassis is a dial 
which indicates the angular position of the resolver wiper. 

The PR mode can be used to generate eR sin Q by replacing +R and -R 
with reference voltage sources. 

A simplified diagram of a servo resolver in the Polar (Rectangular-Polar, 
RP) mode is shown in Figure 11-30. Note the polarity of the x and y inputs 
to the sine-cosine cups, the use of an external operational amplifier, and 
the fact that a voltage p~6portiorial to Q is generated at the follow-up 
cup wiper. The vector magnitude, R, is formed at the output of the 
operational amplifier. The equation x Sin Q = y Cos Q provides the null 
relations~ip necessary to drive the servo wiper to position Q. 
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Figure II-30: Simplified Diagram of Servo Resolver in RP Mode (Inputs +x & y, 
Outputs R & 9) 
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With inputs of ± x and ± y, the sine-cosine cups will produce -x sin 9', 
-x cos Q', -y sin 9', and -y cos Q'. The servo will not null unless 
Q' = 9. Therefore, the servo error voltage, e, is 

e = x sin 9' - y cos Q' 
e = R cos Q sin 9 - R sin 9 cos 9' 
e = R sin (Q - 9' ) 

or for small values of (9 - 9' ) 
e = R (9 - Q' ) 

For accurate computation, the servo must always be close to a null. 
Therefore, sin (Q - 9') can be approximated by (9 - 9'). The servo error 
voltage, thus, is proportional to R whereas, ideally, it should be 
independent of R and simply proportional to (9 - 9'). Hence, for small 
values of R the servo will be sluggish, while for large values of R the 
servo will tend to oscillate. To overcome this undesirable effect, the 
gain of the servo amplifier is made inversely proportional to R. An 
automatic gain control (AGe) circuit, which receives R as an input, will 
increase the servo amplifier gain when R is arnall, and decrease the gain 
when R is large. 

The mechanical position of the follow-up cup is a function of 9, and the 
voltage on its wiper is equal to Q/2 (for a single turn resolver) provided 
the wiper is not loaded. An unloading circuit must be used to provide 9 
for computational purposes. All of the sine-cosine cup wipers in Figure 
II-3~ are feeding either one specified load or an approximately infinite 
inpedence (shown or implied). If any of the wiper voltages are to be 
used for computational purposes, they must be taken to an unloading circuit. 

An unloading circuit that can be used to obtain Q/2 (for a single turn 
resolver) in RP resolution without loading the follow-up cup is shown in 
Figure 11-31. 

-& FROM 
2 WIPER-....... ----4 

*if gain one resistor is 1.0 megohm. 

Figure 11-31 

0.5499 

-& 
-y 

The unloading circuit (which is essentially a positive feedback system) 
functions as follows. Let the wiper voltage be y. We want to make the 
current flowing in the O.lM resistor just equal to the current flowing in 
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the 11'·t input to Al so that no current is drawn from the wiper. Assume a 
total gain of K for A2 and the pot, so its output is +Ky. By Kirchoff's 
current law, the, 

Ky - y J.-

105 10
6 

The solution of this equation yields K = 1.1, calling for a pot setting 
of 0.5500 and a gain of 2. Since at this gain the circuit is just on the 
verge of instability, a slightly lower gain of the order of 1.09 should be used. 

Coordinate transformation is accomplished easily by replacing the ±R 
inputs shown in Figure 11-29 by ±x. Another resolver cup on the same 
unit is fed by the ±y to provide all possible x, y, Sin 9, and Cos Q 

products. These variables then may be conbimed to form u and v 
coordinates using the algebraic relationships shown in Figure 11-28 

A servo rate resolver differs from a position resolver in that it accepts 
a rate. input, dG/dt rather than a position input. It is useful in applications 
where G is available and it is not desirable to produce Q by integration. 
because the system performs many revolutions and 9 would have to be 
scaled at a small scale factor. 

programming symbols 

Progrannl1ing symbols for the three operations described above are shown 
in Figure 11-32. These symbols differ from linear servomultiplier 
symbols only in so far as the nonlinear, sinusoidally-wound cup is 
concerned, which is represented by the symbol 

~-- CUP 
OUTPUTS 

RESOLVER AND 
CUP NUMBER 

-ii. Electronic Resolvers -- Servo resolvers, like all servo computing 
components, can not function efficiently if driven by high frequency 
inputs which often occur in practice. The obvious solution to the 
frequency response problem is the construction of an all-electronic 
resolver using sin 9 and cos 9 fixed diode function generators, 
operational amplifiers, and quarter square multipliers, to solve 
the resolver equations presented in Figure 11-15. 
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+x----. 

-x--'" 
+y----. 

-y-~ 

+R ~
RESOLVER NUMBER 

R3 

R I LOAD IN MEGOHMS 

TYPE OF OPERATION 

R SIN e­
t---- R COS-& 

RECTANGULAR (PR) CONVERSION 

ffiJ-3 
P BLANK SINCE NO 

LOAD REQUIRED 

R 

POLAR (RF) CONVERSION 

Additional sinusoidal cup and stnmning amplifiers required for axis rotation 

Figure 11-32: Servo Resolver Programming Symbols 
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and 

The drawbacks to mechanizing servo resolver circuits using components 
available on a computer patch panel are twofold: 

1) The non-linear components required to mechanize the resolution cir­
cuits detracts from the problem solving capacity of the computer; 

2) The sin Q and cos Q function generators have limited ranges (± 900 

or ~ 1800 is typical). 

The electronic resolver solves both these problems and manufacture's lit­
erature should be consulted for more detailed information. 

A detailed explanation of the electronic resolver is beyond the scope 
of this text and will not be presented. 

The electronic resolver programming symbol in the polar-to-rectangular 
mode is 

-R tR 

'r---x 

~-Y 

cos e-

and, for the rectangular-to-polar mode 

+x -x 

tY R 

-Y e 

cos-e-
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iii. Comparison of Resolvers -- as in the case of multipliers, the type 
of resolver required to perform a specific computation task must be 
defined by the programmer and he must, therefore, be familiar with 
their properties. Servo resolvers are desirable because of their 
accuracy, and also because several resolutions can be carried on the 
same signal at once, as well as multiplication. However, servo re­
solvers are not suited for high speed operation. The choice of rate 
resolvers usually depends on whether continuous or limited rotation 
is desired. Electronic resolvers suffer from increasing percentage 
error for decreasing input levels, but they are capable of operating 
at high speeds and generally offer continuous rotation without diffi­
culty. 

c. Function Generators---The generation of arbitrary as well as 
analytic functions by means of function generators normally is 
required to obtain variable coefficients or parameters of a 
system, or to generate an input forcing function. 

The topic of the fixed DFG has been discussed already in detail. 
However, there are other function generation components whose 
theory of operation is worthy of presentation. They are the 
Potentiometer Padding Unit (pot padder), variable diode function 
generator (VDFG), curve follower and bivariant function generator. 
The latter two devices require a familiarity with the x-y plotter 
which is one type of analog computer readout device. 

i. Potentiometer Padding Unit -- the Potentiometer Padding unit, (pot 
padder) provides a means whereby a number of predetermined voltages 
can be set up and applied to taps on a servo multiplier potentiometer. 
In normal use, a servo mUltiplying cup is a nearly-linear device, the 
output from which is proportional to the position of the wiper, as 
shown in Figure II-33. However, if we apply a number of known 
voltages to the potentiometer at fixed points along its length, then 
the voltage at wiper will no longer be proportional only to its position 
but will be dependent on the voltages applied. 

A typical pot padder permits the application of 17 voltages at 17 fixed 
and equally-spaced points along the potentiometer. As the wiper moves 
past these points, it will pick up those voltages which have been 
applied and which correspond exactly to points on the desired function. 
Between these points the voltage picked up will be approximately 
correct, being a straight line approximation ("linear interpolation") 
of values between two points close together on the curve. 

A typical pot padder circuit, together with its programming symbol, 
is shown in Figure 11-34. Note that the pot padder is a separate 
unit which converts a standard servo multiplier to a function genera­
tor. The pot padder contains slope polarity and control switches, and 
potentiometers which force voltages on tapped cups using complex re­
sistor networks. 
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MULTIPLIER 

SMO 

, ...... _K'_ 
_....J 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

FOLLOW- UP CUP 

E CUP (TAPPED) 

L_,.....-... < 

TO TAP 9 

L________ +E E~P~E 
PATCH PANEL 

f(x) 
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POT PADDER UNIT 
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x 
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f( X) 
t,.. ...... 

-':/ 
100 

WITH REF/PB SWITCH TO PB. PATCHED 
INPUT APPLIED TO PADDING RESISTORS. 
OUTPUT AT MOE IS yf(x}. 

Figure II-34: Function Generator Circuit and Symbols 
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Although the pot padder can feed a wide selection of input resistors, 
its follow-up cup is not loaded. Loading is accounted for in the 
procedure used to set-up the unit. 

One advantage of this unit is that it can be used to fODffi the product 
of two variables, one of which is generated in the pot padder itself, 
as shown in Figure 11-34. 

The fact that the taps are equally spaced is sometimes disadvantageous 
since functions often have regions where the slope is very steep, and 
pot padders are designed with a voltage limitation between adjacent 
taps. This restriction is required to protect the mUltiplier cup 
windings. 

ii. Variable Diode Function Generators -- it is evident that any reasonably­
behaved, single-valued function can be approximated by straight line 
segments if the breakpoints·of the diodes and the values of the input 
resistors are properly chosen. While, theoretically, it is possible 
·to achieve any degree of accuracy desired by increasing the number 
of segments (crowding the breakpoints), in practice, the non-ideal 
switching characteristics of the diodes and other considerations limit 
the number of segments used. Also, all fixed DFG's suffer from 
constant level errors due to the diode switches and these errors, of 
course, are more noticeable at low input levels. It should be noted 
also that while a straight line approximation may give a good fit to 
the function itself, the slope of the DFG segments do not necessarily 
fit the slope of the function equally well. Consequently, differentiation 
of a DFG outp~t should not be attempted. 

I~ in a DFG, the input resistors are made adjustable, then it is 
possible to select the slope of each segment generated. If, in 
addition, the breakpoint of each diode is allowed to vary (by 
adjusting the bias voltage), then the operator essentially can 
adapt a single DFG to any arbitrary, well-behaved, single-valued 
function by selecting b p (break points) and slope* appropriately. A 
DFG provided with b p and slope controls is a VDFG., Figure 11-35, 
illustrates the basic VDFG arrangement. 

In Figure 11-35 (a), 21 , 22 , 23 represent ·biased diode 
networks which control the currents iI' i 2 , i

3
• The diode within each 

network will conduct only when the input voltage, x, exceeds a certain 
value determined by the setting of a BREAKPOINT potentiometer. Thus, 
if the input voltage, x, is less than the breakpoint setting of 21, 

the current, iI, is zero. If x is greater than the breakpoint voltage, 
xb l , il is controlled by the setting of the SLOPE potentiometer. By 
setting the breakpoint point and slope potentiometers of 21 and 22 

appropriately, one obtains the output curve shown in Figure 11-35 (b). 

* VDF~variab1e diode function generator 
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(0 ) SIMPLIFIED SCHEMATIC ( b) TYPICAL OUTPUT CURVE 

Figure 11-35: Simplified Schematic Diagram of VDFG with Typical 
Output Curve 

The parallax potentiometer allows a constant voltage (epx) to be set 
into the amplifier as a bias. This shifts the whole curve along the 
Y axis, as shown. 

d. Curve Follower -- The addition of a curve follower unit converts 
the convential X-Y plotter into a function generator by replacing 
the pen with an R - F pick up device, as shown in Figure 11-36. 

The curve to be generated is drawn in special conducting ink 
or wire and a high frequency signal is applied to its ends. 
The X arm is driven by the independ·ent variable and the pick-up 
device stays close to the curve by correcting the high frequency 
signal error. The voltage representing the position of the pick­
up along the Y axis for a given X is the output of the generator. 
Figure 11-37 contains curve-follower programming symbols, and a 
simplified schematic diagram. 
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Fi gure 11-36: A Typical Curve Follower 
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R
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Figure 11-37: Simplified Schematic Diagram and Programming Symbols for 
Curve Follower 
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e. Bivariant Function Generators -- Generation of arbitrary functions 
of two (or more) variables, such as those arising in studies in­
volving aerodynamic functions, presents a formidable problem in 
that the analog computer works with only one indep(\ndent variable, 
time. However, a simple 2-variable function generator, commer­
cially available, operates as follows using resistive paper and 
an X-Y plotter. Lines of constant Z, where Z = f(x,y), are drawn 
on the paper with low-resistance, conducting paint (silver paint, 
for example), and energized by d-c potentials corresponding to 
the value of Z. The voltage gradient between these lines is lin­
ear. The X and Y inputs position the pick-up device above the 
point (X,Y) where the voltage is approximately Z. This voltage 
is picked up and presented as the output of the function genera­
tor. 

Other techniques for 2-variable function generators, using 
standard pot padders or DFG I S have been de'v€! 1 oped. However, 
these are neither simple nor economical in terms of equipment. 

f. Selection of Function Generators -- Effective function generation 
is essential in the efficient utilization of an analog computer, 
and Chapter V is devoted to presenting material on this topic. 
The chapter also contains a tabulation of the relative merits of 
function generation devices, which should govern the selection of 
the proper component to generate a specific function. 

3. COMPUTATIONAL ACCESORIES 

In addition to linear and non-linear equipment, several other components are 
usually available in the modern GPAC. Typical i)f these are 

1) Passive Elements, specifically resistors, capacitors, and diodes 

2) Switching and Limiting Devices, specifically function switches, 
comparators, and limiters 

a. Passive Elements -- Resistors, diodes, and capacitors, besides 
those incorporated in the amplifier networks, can be used 
effectively in transfer fun~tion simulation whe:re it is desired 
to minimize the number of integrators used. Thus, a single 
amplifier can perform first, as well as second and even third, 
degree transfer functions. (See Chapter VIII). For convenience, 
passive elements are available with patch cord tenllinations. 

b. Function Switches -- These are used to make progrmrnned changes in 
the computer set-up so that several slightly different problems 
can be inves tiga ted without repa tching. The sym:'H) 1.!:. L,l r some 
typical function switches are 
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L = left 

--oU OL R :;.;z right 

~ • • A 
C A C center 
0.- • U = up 

00 OR D = down 

3 position SPDT horizontal switch 3 position, SPDT vertical switch 

C. Comparators - Comparators are either of the relay or electronic 
type. The former consists of an amplifier which drives a relay 
having at least one set of contacts; the latter consists of an 
amplifier and associated circuitry which produce a binary (two­
valued) signal. The binary signal can be used to control an 
electronic switch (usually SPST). Relay comparators have poor 
dynamic response - they require milliseconds of t~e to switch 
and often suffer from contact bounce at high speeds. Electronic 
comparator-controlled switches are extremely fast - microsecond 
response tnnes, no moving parts. 

Both types of comparators operate from a pair of input 
signals, one of which is usually a constant value. When 
x + y > 0, the relay arm moves to close the circuit between the 
arm and the contact labeled "+". (The electronic comparator pro­
duces a signal which would cause the electronic switch to conduct.) 
When x + y < 0, the closed path is arm-to-minus contact tor the 
binary signal turns off the electronic switch). 

~Chc::a,.,'c.a. i 
C'~NN&:::: rU)N 
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4. PRE-FATCH PANELS 

Analog computers, designed for operator convenience and rapid problem "turn­
around", are equipped with removable pre-patch panels. This permits patch 
boards to be stored pending future investigation, and allows patching and 
problem preparation for analog solution while the computer itself is in use 
on another problem. Typical patch panels are shown in Figures 11-38 and 
11-39. 

Modern GPAC patch panels, which on first impression appear to be complex ~nd 
colorful), are in reality quite simple. They are modular in format; there­
fore, one need only become familiar with the patching terminations of few 
computer components (i.e. amplifiers, multipliers, etc.) to understand patching 
for the complete computing system. The components contained in one module are 
duplicated in remaining module~ the only exception being the number designation 
of each component. 

Patch panels (Figure 11-39) indicate the gains of input terminations, 
summing junctions, relay terminations, etc., of individual components. 

The purpose of the color code is to guide the operator in patching. For 
example, red terminations are usually component outputs and green terminations 
are inputs. Small groupings of patching terminations which are not part of 
the basic module pertain to trunk lines (console interconnections), readout 
devices, and miscellaneous components such as Noise Generators. 

Interconnections between patch panel termi.nations are made using patch cords 
and bottle plugs. Patch cords, which come in various lengths, are color coded 
to facilitate storing and patching. 

Bottle plugs, which are encapsulated patch cords, are used to interconnect 
adjacent terminations, or to perform frequently-occuring interconnections. For 
example, bottle plugs are used to interconnect all relay coils, relay-buses, 
input networks, and feedback paths associated with an amplifier to convert it 
to an integrator. The use of bottle plugs reduces patch panel clutter, and 
relieves the operator of making repetitive, commonly-occuring patching connections. 

Specific patching connections required to interconnect analog computer components 
are a function of the particular computer used. Therefore, one must consult 
reference material associated with a computer prior to problem patching. 

a. Electronic Digital Voltmeter (EDVM) -- The EDVM shown in Figure 11-40 
is a precision readout devir.e that displays the voltage it measures 
in all illuminated arabic numerals. It combines speed and accuracy 
with high input impedance, usually greater than 100 megohms. 

Its high conversion speed -- an average of 200 conversions per 
second -- permits almost instantaneous readings of slowly 
varying voltages. This speed, plus the feature of push-button 
readout by which any monitored voltage is displayed on the 5-
digit-pius-sign display panel at the operator's option, reduces 
pot-setting time by 50%. 
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Figure II-38: Typical Patch Panel. 
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Figure II-39 . Typical Patch Panel Module . 
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DVM 

Figure 11-40 : Typic a l Elect r onic Di gital Vo ltmeter 
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Fi gure 11-41: 1110 X Y Plotter 
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Figure II-42: Typical Strip Chart Recorder 
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b. X-y Plotter -- The X-Y plotter is shown in Figure 11-41. It 
is used to record two variables simultaneously in the form of a 
rectangular coordinate graph. It employs two servo systems 
similar in principle to that of the servo multiplier. The arm 
is positioned by a drive tape driven by an electric motor. This 
tape is connected to the wiper of a potentiometer energized by 
reference voltage. The wiper voltage is, therefore, proportional 
to the arm position. This voltage is compared with the "arm input" 
voltage from the computer by means of a different amplifier 
which produces an error voltage proportional to the difference 
between the two signals. This error voltage controls the servo­
motor, moving the arm in the direction of decreasing error until 
a null is obtained. A similar servo-mechanism positions the pen 
on the arm in accordance with a second input voltage. The result 
is a rectangular plot of one voltage versus another. 

The plot is made in ink on paper, the paper being held in position 
by a vacuum system. The variplotter table is made of plastic. 
In this surface, there are many shallow grooves. At intervals in 
in the grooves, holes are drilled through the table and these are 
connected to a vacuum pump. The subatmospheric pressure in the 
grooves holds the paper in place. 

c. The Multi-Channel Recorder--The multi-channel recorder shown 
in Figure 11-42 employs a moving strip of paper, drawn at 
constant speed past a set of pens. Most of the pens are 
deflected proportionally to input voltages, and the result 
is a set of graphs of voltages as functions of time. Additional 
pens, called "event" pens, one at each edge of the paper, produce 
timing marks at one-second intervals. 

d. Oscilloscope for Repetitive Operation Displays -- oscilloscopes 
are used for computer readout during high speed repetitive 
operation which will be discussed in later chapters. In repetitive 
operation, solution speeds of 50 solutions per second are typical. 
This speed, of course, precludes the use of the X-Y plotters or 
multichannel recorders as readout devices. 

The oscilloscopes used in computing systems (Figure 11-43) have 
from four to eight curves displayed simultaneously, and the 
capability of cross-plotting. 
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Figure 11-43; Typical Computing System Displa y Unit. 
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CHAPTER III 

ANALOC COMPUTER PROGRAMMING AND CHECKING PROCEDURES 

This chapter covers the basic techniques of programming, scaling, and 
checking out a problem on a general purpose analog computer. Itis 
divided into five sections: 

A. Programming 
B. Scaling 
C. Equipment Assignment 
D. Documentation 

·E. Static Check 

Since the most common mathematical models solved on analog computers are 
sets of ordinary differential equations, this chapter will concentrate on 
differential equation solution. Some information and references on the 
solution of algebraic equations are given in Chapter IV, and partial 
differential equations are covered in Chapter XI. 

A. PROGRAMMING 

1. Example: A First Order Equation 

Let us start with a simple first order equation: 

dx 
dt = - kx (k constant) (1) 

This equation may describe a number of different physical phenomena, ~uch 

as radioactive decay, dilution in a stirred tank, the discharge of a capacitor) a 
first order chemical reaction, and many others. 

The two variables in this equation are x and dx/dt. How can we represent 
the relation between them with analog components? Clearly, the component 
that accomplishes this is the integrator: 

_d_X_/d_t _[>_-_x_ 
Figure 1 

If we feed dx/dt into an integrator, the output will be -x. But where can 
we obtain dx/dt? From Equation 1, we see that this is simply -kx. Since. 
-x is available at the integrator output, we can use a pot to multiply it 
by k: d X 

k -kx=--
dX/dt [> -x 0 dt 

Figure 2 
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This produces -kx at the output of the pot. Since this is exactly what 
is needed at the integrator input, we can provide the desired input by 
connecting the pot output to the integrator input: 

-x 

Figure 3 

k dx, 
- kx = Idt 

In order to specify the solution completely, we need to know the initial 
value of x. (Equation 1 actually has infinitely many solutions -- one for 
each initial condition.) If this initial value is given, we may implement 
it on the computer by means of the Ie terminal on the integrator. The 
appropriate Ie voltage will be achieved by means of reference voltage and 
a pot: + Ref 

xo/Ref 

-x 

k 
Figure 4 

Note that the setting on the Ie pot is xo/Reference Voltage. The pot is 
connected to +Reference so that the initial voltage out of the integrator 
will be negative. 

Note that this circuit produces the output -x. If it is desired to generate 
+x instead, this can be done by integrating -dx/dt: 

-dX/dt 
-----~I[I:>-----+_X-

Figure 5 

Since -dx/dt = +kx, we can close the loop to obtain Figure 6: 

-Ref. 
x 
o/Ref 

+x 

Figure 6 
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Note that the only difference between Figure 4 and Figure 6 is that Figure 6 
uses minus Reference on the Ie pot to obtain a positive initial condition 
on the integrator. 

The programming technique used in solving the above problem is simply stated 
as follows. We start by assuming that dx/dt (or -dx/dt) is available, and then 
integrate it to produce the variable x at the integrator output. We then use 
this integrator output to generate the derivative that we started with. The 
reasoning appears circular: If we have -dx/dt available, then we can integrate 
it to obtain X; if we have x,-;e can mUltiply it by k to obtain -dx/dt. Does 
this simple approach really lead to a valid solution of the given equation? 

Perhaps the best way to see that it does, is to consider what happens if 
we put an initial condition on the integrator and put the computer into the 
OPERATE mode. For concreteness, assume Xo = 5 volts and k = 0.2. Referring 
to Figure 6, we see that the initial condition of +5 volts at the integrator 
output produces +1 volt at the integrator input. Therefore, the integrator 
output will decrease at the rate of 1 volt per second initially. 

Of course, the rate of change will not remain constant at 1 volt per second. 
As the integrator output decreases, its rate of change will also decrease. 
In fact, the rate of change of the integrator output x at any given time 
will be proportional to the value of x at that time. If we translate this 
last statement into an equation, 'ole obtain: 

dx/dt = - kx 

which is Equation 1, the equation we started out to solve. 

The circuit in Figure 6 is mathematically similar to a radioactive isotope, 
an R-C circuit, a stirred tank, or any other ~stem that satisfies the same 
equation. Starting with a 5 volt initial condition on the integrator and 
watching it integrate down to zero is analogous to starting with 5 grams 
of an unstable isotope and watching it decay, or starting with 5 pounds of 
salt in a well-stirred tank and flushing it out by forcing a stream of 
fresh water through it at a steady rate. The tank, the isotope, and the 
computer circuit all satisfy the same equation, and therefore exhibit similar 
behavior. Each of these systems is said to be a model or analog of the 
others (hence the name "analog computer"). The computer circuit is also 
said to simulate the other systems. 

2. Example: A Second Order System 

As a second example, consider a slightly more complex equation: 

a x + b i + c X = 0 (2) 

where the dot over a variable represents differentiation with respect to 
time, e.g. x = dx/dt, and x = d2x/dt 2 • A spring-mass system with damping, 
and an R-L-C circuit provide examples of physical systems described by this 
equation. 

a. Obtaining the Circuit 

This equation may be solved on the computer in essentially the same manner 
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as Equation 1. In solving Equation 1, we started with an integrator, and 
assumed that the desired input was available. In this case, since the 
equation is second order, we must integrate x to produce -x, and integrate 
-x to provide +x: 

___ x _____ �[I:;> __ X __________ ~I[[:>-+--X-----

Figure 7 

Now how do we provide the necessary input x? To do this, we must solve 
Equation 2 for x: 

x = 1 (bx + cx) = 
a 

b c 
x - - x 

a a 
(3 ) 

This equation says that we can obtain ~ from x and x by means of a summing 
amplifier and two pots: 

bl a 
x a=t> x 
x 0 

CIa 

Figure 8 

Observe the effect of the sign inversion in the amplifier. The sum of the 
inputs is - x (from Equation 3) so that the output is +i. 

To close the loop, we must combine Figure 7 and Figure 8. 

b 
a 

C 
a 

+x 

-x 

Figure 9 

+x 

Note that an inverter is required, since +X is called for, but -x is available. 
Since the system contains two integrators, two initial conditions must be 
specified (the initial values of x and x). Once these are given, they may be 
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established at the integrator outputs by means of pots and reference voltage. 

b. Justification of the Circuit 

The circuit of Figure 9 was obtained by the same simple technique that 
was used to obtain Figure 4 and Figure 6. To increase our understanding 
of the circuit (and our confidence in the method) we may analyze this 
circuit by considering the effect of a 5 volt IC on the integrator pro­
ducing x. For simplicity, set b=O and c/a=l, so that the inverter and 
the pots are eliminated (Figure 10). Note that in this case, the summer 
producing x becomes simply an inverter. 

Figure lOa shows the state of the circuit in the IC (or RESET) mode. Amplifier 
#3 has its 5 volt initial condition, and amplifier #1, which is acting as 
an inverter, produces -5 volts. With no IC patched into amplifier #2, its 
output is zero. 

Figure lOb shows a plot of the amplifier outputs after a short period in 
the OPERATE mode. The reader should be able to verify that all amplifier 
outputs will change in the direction indicated. For example, amplifier #2 
receives a negative input, which causes it to integrate upward (remember 
the sign inversion in an amplifier!). As the output of amplifier #2 becomes 
positive, amplifier #3 begins to integrate downward. Since amplifier #1 
is simply an inverter, its output follows the output of amplifier #3. 

As amplifier #3 continues to integrate downward, it eventually will cross 
zero (Figure 10c). At that moment, amplifier #1 also crosses zero. The 
reader should be able to convince himself from Figure lac that the output 
of amplifier #1 is about to cross zero and become positive. Note that as 
the output of amplifier #3 becomes positive, amplifier #2 will start integrat­
ing downward. Therefore, at the instant when amplifiers 3 and 1 are crossing 
zero, amplifier #2 is passing through a maximum. 

Continuing this reasoning, it becomes clear that the outputs of all amplifiers 
will oscillate. Figure 10d shows the oscillations for one complete cycle. 

The oscillations observed in this system are to be expected in view of the 
fact (proved in any textbook on differential equations) that the solution 
of Equation 2 is a sinewave (in case b=O). In case b > a the inverter and 
pot in Figure 9 must be added, which will cause the osciliations to damp out. 

The fact that the solution to Equation 2 oscillates is worth remembering. 
An analog progrannner soon learns to recognize a loop with two integrators 
in it as an oscillator. Such loops frequently appear as part of a larger 
system. (For example, the automobile suspension system analyzed below may 
be thought of as two coupled oscillators.) 

c. Alternative Circuits 

The response of the system can now be investigated for a large number of 
values of the parameters a, b, and c. To change the value of c, all we have 
to do is change the pot setting labeled "c/a". Similarly, changing the pot 
setting labeled "b/a" will change the value of b, and changing both pots 
in the same proportion will change the value of a. 

It would be more convenient to change a if this parameter were on a single pot. 
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-t----... ·t o '~' 

Figure lOa. The spring-mass circuit of Figure 4 shown in the initial 
condition, or RESET mode (t = 0). For simplicity, b = 0, and cIa = 1. 

r---~I I 2 

-r--r _.t 

Figure lOb. Plot of output voltages versus time for the first few seconds 
of operation. Amplifier #1 is inverting Amplifier #3. Amplifier #2 is receiving 
a negative input voltage and integrating upward. Amplifier #3 is receiving a 
positive voltage and integrating down. 

Figure lOco ~lot of output voltages up to the time Amplifier #3 crosses zero. 
Note that Amplifier #2 will soon be integrating downward, since Amplifier #1 is about 
to change sign. 

Figure lOde Plot of output voltages for one complete cycle. Since all 
output voltages have returned to their initial conditions, the cycle will 
repeat itself. 
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This goal may be achieved with pot feedback, as in Figure 11. 

+x 
b 

-x +x 

c 

Figure 11 

This circuit isolates each system parameter on a single pot, making parameter 
changes easier. 

Another modification, useful when economy of amplifiers is important, is to 
make use of the fact that an integrator can add as well as integrate. If 
the two terms (b/~~ and (cia) x are fed directly into an integrator, the 
output is not X, but x. This leads to the circuit in Figure 12. 

+x -x +x 

Figure 12 

This circuit uses one less amplifier than the circuits of Figure 9 and 
Figure 11, but it has the disadvantages that ~ is not available for record­
ing, and that the parameters a, b, and c are not isolated on single pots. 

It should be emphasized that all three of the above circuits are legitimate 
programs for solving Equation 2, and all will produce the same result. They 
differ in convenience, flexibility and economy of equipment. 

3. Summary of Steps 

1) Obtain a description of the system to be studied in 
terms of ordinary differential equations. 
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2) Solve each equation for the highest derivative that occurs 
in it. 

3) Integrate these derivatives to obtain the lower-order 
derivatives and the variables themselves. 

4) Feed these lower-order terms into the. appropriate components, 
as called for by the equations, to generate the highest 
deri va ti ve s and II c lose, the loop". 

5) Provide initial conditions from pots and reference voltages, 
as required. 

Step 4 can be carried out in more than one way since there are generally 
many different but equally correct circuits for any given problem. (See 
Figures 9, 11, and 12.) 

4. Coupled Systems 

The above examples required the solution of a single equation in each 
problem. However, problems involving systems of coupled equations may be 
solved in a similar manner. 

For example, consider the system in Figure 13, which is a simplified model 
of one wheel of an automobile suspension system. The spring-action of the 
tire provides us with one equation, and the action of the auto spring and 
the shock absorber provide another. A force-balance yields the equations: 

(4) 

In these equations, x represents the displacement of the chassis, x
2

,the 
tire displacement, and x3)the road function. 

QUARTER OF 
MASS OF CHASSIS lX' 

(MI) 

AUTO 
SPRING 

( K,) 

SHOCK 
ABSORBER 

---- (D) 

HALF MASS OF 
AXLE a MASS 
OF WHEEL( M2) ~2 

TIRE (K 2 ) 

ROAD FUNCTION (X3) 

Figure 13 Simplified Model of an Auto Suspension System 
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For simplicity, we assume that x3 is a step function, (for example, the car 
might be riding up over a curb). Other, more complicated, functions are 
possible, of course, to simulate a "wash board" road, etc. However, a 
step input keeps the program simple -- we may represent x3 by a pot connected 
to reference voltage. The quantities K1,K , M1 , M2 , D, and x3 are therefore 
all constant for a given computer run. 2 

a. Progranuning 

Following the rules outlined above, ~e start by solving each equation for 
the highest derivative: 

D K 
xl = -M

1 
(xl - x ) 1 (xl - x 2) 2 M1 

(6) 

D 
(~2 - i ) _ ~1 

(x2 - xl) 
_ K2 

(x
2 

- x
3

) x
2 = -M

2 1 
M2 M2 

(7) 

The highest derivatives xl and ~2 may be generated by means of summers, or 
we may make use of the mu tip1e inputs available on integrators to add and 
integrate at the same time: 

X'-X2 
DIM 

I • 

o O=[I> +x, 

XI-X2 
K"i MI 

IT> 
-XI 

---- ---

• • X2-XI 

DIM 2 
• 

X 2 - XI +X2 

Figure 14 

Note the effect of the sign inversion in each integrator: the sum of all 
inputs to the first integrator is :~l' and the output is ~1' 

The next step is to generate the terms needed at the integrator inputs. This 
will illustrate the coupling between the two systems. Note that each term 
required by the xl integrator is also required by the ~2 integrator, but with 
opposite sign. (Incidentally, this fact has a physical interpretation. By 
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Newton's Third Law, the spring and the shock absorber exert equal and 
opposite forces on Ml and M2). These terms may be g~nerated with summing 
amplifiers: 

TO x. INTEGRATOR 

Figure 15 

The damping term (~1 - ~2) can be generated similarly. 

The x2 - x3 input required by the 'x2 integrator may be generated by a sunnning 
amplifier: 

[J)_-X2 .r=o=C>----t 
+ REF ---' X3~ 

REF Figure 16 

TO x21NTEGRATOR 

Combining Figures 14, 15, and 16, we arrive at a complete circuit: 

+ Ref 

Figure 17: Complete Circuit far Auto Suspension Problem 
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b. Amplifier Economy 

Note that four inverters are required to generate the coupling terms 
x2-xl' x l -x2 , etc. Since both the i2 integrator require the same inputs, 

but with different s~gns, we may save several of these inverters by generat­
ing -~2 instead of +x2 : 

X1- x2 ~ D> XI-X2 
+x, -xI 

DIM 
I . 

III -x2 

Figure 18. 

eomparing Figure 18 with Figure 14, we see that in Figure 18, the variables 
to be subtracted appear at the integrator outputs with opposite signs, so 
that we do not need inverters in order to subtract. The complete program, 
based on Figure 18 as a starting point, is given in Figure 19. This circuit 
uses only eight amplifiers, as compared to eleven for Figure 17. In general, 
when the equations call for subtraction, inverters may be saved by generat­
ing the terms with opposite s~gn. 

-Ref 

Figure 19: Modified Circuit for Auto Suspension Problems Using 
Fewer Amplifiers 
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Note that the three upper amplifiers in Figure 19 form an oscillator, and 
the three lower amplifiers form another one. Thus the entire circuit may 
be regarded as two oscillators with coupling terms added. This suggests 
that the response of the circuit should consist of two superimposed oscillations 
with different frequencies. This turns out to be the case, which can be 
verified either by running the program on the computer or by solving the 
equations analytically. The basic point to keep in mind is that we can 
actually identify parts of the circuit with parts of the original physical 
system -- the three upper amplifiers represent the chassis, the three lower 
amplifiers represent the axle, and the coupling components in between 
represent the spring and shock absorber. 

5. Exercises 

B. SCALING 

1. Examine Figure 19 and verify that all integrators 
have the appropriate inputs, with the appropriate signs. 

2. Draw a circuit diagram for the auto syspension problem 
requiring only six amplifiers. (Hint: remove all 
parentheses in E~uation 6 and Equation 7 so that the 
xl integrator has four inputs and the ~2 integrator has 
six input s. ) 

3. Compare your circuit diagram from exercise 2 with the 
one in Figure 19. Consider 

a) The number of amplifiers used 

b) The number of pots used 

c) The number of pots that have to be adjusted 
to change a problem parameter, such as D (the 
shock absorber damping coefficient) 

1. Need for Scaling 

Up to now, no mention has been made of the range of the problem variables 
or the magnitude of the parameters. Amplifier outputs have been simply 
labeled x,x, xl-x2' etc., and pot-settings have been labeled ~/M2' DIMl' 
etc. It should be clear that, except in very special cases, such a program 
cannot be run "as is". For example, if DIM turns out to be 150, it will be 
impossible to set a pot to this value. If a variable x has a maximum value 
of 1000 feet, then an amplifier whose output is x would have to put out 1000 
volts, which is also impossible. Hence the amplifier outputs cannot be 
numerically egual to the problem variables they represent, but merely 
proportional to them. We must multiply the problem variables by appropriate 
constants, called scale factors, to assure that the amplifier outputs and 
pot-settings will not be too large. 

It is also true, although somewhat less obvious, that amplifier outputs 
and pot-settings should not be too small. For example, a pot-setting of 
0.5000 can be set, on a high-accuracy computer, to within 0.0001, which is 
1 part in 5000. A pot-setting of 0.0010 can be set, on the same computer, 
to 1 part in 10, and a setting of 0.000005 cannot be obtained at all! Similarly, 
a variable with a maximum value of 0.002 foot cannot be accurately represented 
by an amplifier output whose maximum value is 0.002 volt, since this is of 
the same order of magnitude as the noise and computing error in many comput-
ing components. 
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The process of choosing scale factors is a common one in technical applications, 
even outside the field of analog computation. For example, suppose we are given 
the fo I1mving da ta to be put into graphical form: 

HP vs SPEED FOR INTERNAL-COMBUSTION ENGINE 

Speed (RPM) HP 

250 20 
500 50 

1000 82 
1500 95 
2000 75 
2500 40 

Before we can plot the data, we must choose a scale factor -- the number of inches 
that will correspond to one RPM or one HP. This is easily done by observing the 
maximum value of each variable and comparing it with the size of the graph paper. 
The object is to produce a graph large enough to use most of the graph paper, yet 
not so large that it runs off scale. 

Figure 20 illustrates the correct graph, together with examples of poor graphs 
that result from an inappropriate choice of scale factors. Curve #1 is analogous 
to a poorly scaled amplifier, which overloads during the computation, while Curve 
#3 is analogous to an amplifier whose output never gets larger than 10% of refer­
ence voltage -- with a corresponding loss of accuracy 

100 --------------.....-
90 t----H----+-~~---.;alr___+_-~ 

80 t---+-t--____ <#----+-/".-..JI.-t-----t 

ffi 70 t---of-t~_#_--I--_+---+-~--t 

~ 60 t---+-t-+---+----+--_+_~--t 
Q. 
W 50 t----f----i~---I--_+--__I_-___\I"""I 
(/) 

~ 40 t--.......... -+-+---+---+----+--~ 
J: 

30 1----1--+---+----+-----1.-----1 

20t-----t----+--~-+--+----~ 

10r----~_=~ __ ~~ __ *==_, 
01----+---+---+-----11----f 

o 500 1000 1500 2000 2500 
SPEED (RPM) 

Figure 20 Graph of Speed vs Horsepower, Internal Combustion Engine 

2. Choosing Scale Factors 

As pointed out above, the output of each amplifier should be proportional to the 
problem variable that it represents. The constant re1~ting the two is called the 
scale factor, and is defined formally by the relation: 
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Amplifier Output = K '·(Prob1em Variable) 
or, solving for the scale factor K: 

K = Amplifier Output 
Problem Variable 

(8) 

(9) 

To determine an appropriate value for K, we need an estimate of the maximum 
value of the problem variable. Assume that this estimate is available. 
When the problem variable reaches its maximum value, then the amplifier 
output will be at its maximum value, which should be the reference voltage 
of the computer: 

K _ Reference Voltage 
- Maximum Value of Problem Variable (10) 

If we substitute this value of K into Equation 8, we obtain Equation 10: 

Amplifier 0 = (Reference Voltage) (Problem Variable) (11) 
utput Maximum Value of Problem Variable 

From this equation, it is obvious that wh~n the problem variable is at its 
maximum, the amplifier output will be reference voltage, as it should be. 

As an example, suppose a problem variable x has a maximum value of 1000 
feet. On a ten-volt computer, the scale factor would be, from Equation 10: 

10 volts 
K = 1000 feet = 0.01 volts per foot 

and the amplifier output would be O.Olx or x/100. If a hundred-volt 
computer were used, the scale factor would be 

100 volts 
K = 1000 feet = ,0.1 volts per foot 

and the amplifier output would be O.lx or x/10. 

As the above example illustrates, the scale factors depend not only on 
the behavior of the problem variables, but on the reference voltage of the 
machine. It is possible to avoid this dependence by an appropriate choice 
of units for voltage measurement. The previous example assumed that the 
voltages were measured in volts, but, of course, we may use other units, 
such as millivolts, microvolts, or kilovolts, if these units turn out to be 
more convenient. 

For the purpose of analog scaling, it turns out that the most convenient 
unit of measurement is the reference voltage of the computer. This means 
that on a 10 volt computer, the unit would be the dekavo1t (10 volts), 
and on a 100 volt computer, it would be the hectavolt (100 volts). While 
these units are not as common as the more familiar millivolts, microvolts, 
and kilovolts, the programmer need not actually concern himself with remember­
ing the correct prefixes. It is common practice to refer to the reference 
voltage of the computer as one unit, and ignore the terms "dekavo1t" and 
"hectavo1t" altogether. Sometimes the terms "analog unit", "machine unit", 
or "normalized unit" are used, but this chapter will use the shorter term. 

The reason for measuring amplifier outputs in terms of the computer reference 
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voltage is that all amplifier outputs range between -1 and +1 unit on any 
machine~ regardless of the reference level. In the above example, the scale 
factor would be 

Reference 
K = ------------------------------------ = Maximum of Problem Variable 

and the amplifier output would be 

1 unit 
1000 feet 

(Reference) (Problem Variable) = x 
Maximum. of Problem Variable 1000 

= 10-3 units 
feet 

Note that, since the reference voltage is always one unit, the computer 
variable is simply the ratio of the problem variable to its maximum value, 
and clearly will be less than one unit in magnitude. 

3. Scaled Equations 

mlen maximum values have been estimated and appropriate scale factors selected, 
the next step is to make the computer circuit consistent with the original 
problem equations. The origin~l problem equations are stated in terms of 
problem variables, such as x, x, T, P, etc., while the actual amplifier 
outputs are computer variables, such as xllO, S~, TIlOOO, PIS, etc. We 
must translate the original problem equations into computer oriented terms, 
i.e. we must express each scaled amplifier output in terms of its scaled 
inputs. 

An expression g~v~ng a scaled amplifier output in terms of the scaled inputs 
is called a scaled equation. A scaled equation can be written down for 
every amplifier in a problem, and should have the following properties: 

a) It should be consistent with the original problem 
equations. 

b) It should be machine-oriented; that is, the individual 
terms and factors in the equation should correspond to 
various parts of the machine. To aid in identifying the 
various parts of the equation, the following convention is 
widely used: 

Scaled variables(either amplifier outputs or reference [ ] 
voltage) are enclosed in square brackets 

Pot-settings are enclosed in parentheses ( ) 

Amplifier gains are not bracketed. 

c) The pot-settings and gains in the scaled equation should be 
"reasonable", i.e. neither too big nor too small. Exactly 
what is "too big" or "too small" is to some extent a matter 
of taste, but as a general rule of thumb, most pot-settings 
should be greater than 0.1, and most gains less than 10. 
Occasional smaller pot-settings or larger gains can be 
tolerated, but any pot-setting less than about 0.01 or gain 
larger than 20 should be looked upon with suspicion. 

Actually, it turns out that in most cases, if we are consistent in satisfying 
conditions a) and b), then condition c) will "take care of itself". In a 
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few cases, some additional manipulations are required to satisfy condition c), 
but these are generally quite easy, as we shall see below. 

The three criteria for a properly scaled equation suggest immediately the 
steps for obtaining it: 

a) Write down the expression for the amplifier output in 
terms of its inputs in unsealed form. 

b) Eliminate each problem variable by substituting an equivalent 
expression in terms of the corresponding computer variable, 
taking care to maintain the balance in the equation. For 
example, if the unsealed equation contains a variable x, 
and the corresponding scaled variable is [x/50] , then we may 
replace x by 50 [x/50] wi thout unbalancing the equation. 
Note the square brackets around the computer variable. 

c) Solve this equation for the scaled output in terms of the 
scaled inputs. If pots are required, show their settings 
in parentheses (remember a pot-setting must be less than 
unity) and leave amplifier gains unbracketed. 

d) Examine the pot-settings and gains in the scaled equation, 
and, if necessary, manipulate the equation further to make 
the pot-settings and gains "reasonable". 

The above steps provide a general guide to the procedure. The details will 
depend upon the type of amplifier being scaled (e.g. summer, inverter, 
high-gain amplifier, etc.). The detailed procedure is outlined below 
for the more common types of amplifier: 

a. Sumners 

The general form for a scaled equation for a summer is 

[output] = - [[Input] (pot-Setting) Gain 

To see how such a scaled equation is obtained, suppose we have the following 
unsealed diagram. 

____ X_y ____ ~[::>~---(-x-+-y)-

Figure 21 

and assume we are given the following maximum values. 

PROBLEM MAXIMUM COMPUTER 
VARIABLE VALUE VARIABLE 

x 5 feet [xIS] 
y 3 feet [y/3] 

x+y ? 
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If maximum values are given for x and y, then the maximum value of the sum 
(x+y) may be easily estimated. Clearly, the sum can never be greater than 
8 feet. Is this the true maximum value? Probably not, since this value can 
only be achieved if x and y reach their maximum values in the same direction 
at the same time. If x is near zero when y is at its maximum, or if x is 
negative when y is positive, then the 8 foot level will never be reached. 
However, if nothing is known about x and y except their maximum values, 
it makes good sense to be conservative and assume the "worst case". Accordingly, 
we estimate the maximum value of the sum as 8 feet, and the scaled output 
will be[x;y]. 

Once these maximum values are determined, we may follow the above outline 
of steps to obtain the scaled equation: 

The relation between the output and the inputs in unsealed form is simply 

- (x+y) == - (x+y) (12) 

that is, the output is minus the sum of the inputs. 

Eliminating problem variables in favor of computer variables, we obtain 

8 [-r~)]: -{s [~] + 3[3]} (13) 
This equation is equivalent to Equation 12, since we have substituted 
equivalent expressions. Note that the minus sign on the left is inside 
the brackets, since the brackets, by convention are placed around amplifier 
outputs, and the amplifier output is [- (~l]. 

To solve for the amplifier output in terms of the inputs, we divide both 
sides of the equation by 8: 

[- (~)] = -~%l[~] + I~)[m (14) 

Note that the factor of 8 has been grouped with the factors of 5 and 3 on 
the right-hand side, to produce pot-settings of (5/8) and (3/8). Since 
these numbers are less than unity, we may use gains of 1 on the amplifier, 
and the final scaled equation is 

[- (~)] = - {1(~)[~) + 1( ~)(~]} (15) 
where amplifier outputs, pot-settings, and gains are explicitly displayed. 
The scaled diagram corresponding to this equation is given in Figure 22. 

,Figure 22 
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The pot-settings (5/8) and (3/8) are certainly "reasonable", i.e. neither 
too large nor too small. Is this because we were "lucky" in this case, or 
is this something that can be reasonably expected to happen when a summer is 
properly scaled? Going back over the scaling process, we observe that the 
factors of 5, 3, and 8 that arose in the scaled equation are simply the 
estimated maximum values for x, y, and (x+y) respectively. The fact that 
the pot-settings turned out to be reasonable is a direct consequence of the 
way in which the maximum values were estimated. 

To see that this is true in general, consider an arbitrary summer with m 
inputs (Figure 23). 

M 
INPUTS 

-----(8 C>>---OU_TPUT 

Figure 23 

Once estimates are known for the maximum of the output may be estimated by 
the "worst case" method, i.e. by assuming that the inputs all reach their 
maximum values in the same direction at the same time. Suppose the output 
is scaled on this basis, and the scaled equations written accordingly. If 
the "worst case" actually occurs when the problem is run, then all scaled 
inputs will reach their maximum values in the same direction at the same 
time, i.e. all inputs will have values of +1 unit. At this time, the scaled 
output will have its maximum value (1 unit). In order fot this to happen, 
the sum of all pot-settings in Figure 23 must be unity. This rules out the 
possibility of pot-settings greater than unity, and also rules out the case 
where the pot-settings are all very small. If we choose the "worst case" 
scale factor for the output, or any scale factor reasonably close to it, 
then we should not expect very large or very small gains in the final 
scaled equation. 

b. Pot-Feedback Amplifiers 

Consider the equation 

Z :1.1 (bx + ey) 
a 

(16) 

This equation can be mechanized with a summing amplifier and scaled in the 
same way as the above example. However, a high-gain amplifier with pot­
feedback offer"s better parameter isolation, as shown (unsealed) in Figure 24. 

b x 
y 

Figure 24 
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Suppose we are given the following data: 

a g 75 

b g 2 

c r; 180 

To scale the circuit, we first estimate the maximum value of z, using the 
"worst case" assumption: 

IZI ~ ~s {(2) (500) + (180) (4)) = ~5 (1000 + 720) 

I zi ~ 22.8 

Since it is desirable to have a round number for a scale factor, we round 
this off to 25. In general, it is a good idea to round the estimated 
maximum~, rather than down. If we scaled z for a maximum value of 20, 
then the amplifier producing [z/2m might overload. Hence we have "the 
following scaled variables: J 

PROBLEM 
VARIABLE 

x 

y 

z 

ESTIMATED 
MAXIMUM 

500 

4 

25 

SCALED 
VARIABLE 

[x/sao] 
~Y/4] 
l Z/25] 

Next, we must take equation 16 and convert it to a scaled equation containing 
the computer variables. Substituting equivalent expressions into Equation 16, 
we obtain 

(17) 

The desired amplifier output is - ~/2SJ (note the minus sign the unsealed 
diagram in Figure 24 shows that the output will be proportional to minus z, 

"because of the sign inversion in the amplifier). Solving for -[z/25] , 
we divide both sides of the equation by -25 

(18) 

Equation 18 is almost in the right form for the output of a pot-feedback 
amplifier; namely, 

[output] ::::; - (Pot-setting) Gain 
(19) 

in which the factors in the denominator are the feedback pot-setting and 
the gain into which it is patched. The remaining step is to separate each 
term in parentheses into the product of a pot-setting and an amplifier gain. 
Looking at the numerical values of these expre~sions, we note that they are 
all quite large: 

500b -= 1,000 
4c r; 720 
25a :::J 1,875 
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If we separate these terms into pot-settings (which must be less than unity) 
and amplifier gains, we discover we need a gain of almost 2000. We must 
find some way of eliminating these large gains without disturbing either 
the balance of the equation or the scaling of x, y, and z. 

Equations 18 and 19 involve ratios, with pot-settings in both the numerator 
and the denominator. Hence we may multiply or divide both numerator and 
denominator by an arbitrary constant without changing the value of the ratio. 
We'may choose this ratio so that the largest pot-setting in the equation is 
less than unity, thus assuring reasonable settings. In the present case, a 
good choice is to divide the numerator and denominator in Equation 18 by 
2000: 

[-Z/2S] = 
(b/4) [x/SOO] + (c/SOO) (y/4] 

- (a/80) (20) 

This equation is equivalent to Equati~n 16, which may be checked by cancell­
ing the common factors. However, it contains only scaled variables and 
reasonable pot-settings. The numerical values of the pot-settings are 

b/4 = 0.5000 
c/SOO = 0.3600 
a/80 = 0.9375 

and thus we may use gains of 1 in all cases. The final scaled diagram is 
given in Figure 25: 

O/ao 
Figure 25 

c. Inverters 

The scaling of an inverter is very simple, since the maximum magnitude of 
-x is the same as for +x. Hence the inverter input and output should have 
the same scale factor -- if the input is [x/2SJ , the output will be [-x/2S] 
Note that no pots are necessary. It is possible to write a scaled equation 
for an inverter: 

[- X/2S] = - [ X/25] (21) 

which says that the output of the inverter is minus the input. However, 
the component is so simple that the scaled equation is generally omitted. 
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d. Multipliers 

Multipliers, like inverters, are easy to scale; properly scaled inputs almost 
always produce properly scaled outputs. This is because properly scaled 
inputs will have values between -1 unit and +1 unit; when both inputs are at 
their maximum (1 unit) the output is also 1 unit, and this is the maximum 
possible output. 

As an example, suppose we want to generate a voltage proportional to xy, 
where Ixl ~ 50 feet and Iyl~ 10 feet, so that the corresponding scaled 
variables are [x/50] and [y/10J. How do we estimate the maxinrum value of 
the product xy? Clearly, the product can never exceed 500 ft 2 , and will only 
get this large if x and y "peak" simultaneously. (Compare this situation with 
the situation for the summer). If we know nothing about x and y except their 
maxinrum values, then the safest procedure is to use the "worst case" estimate, 
as we did for the summer. In this case, the estimate is 500 fe 2 , so that 
we should generate the scaled output [xy/sOO). If we nru1tip1y the scaled 
inputs [x/50] and &/10], the product is [xy/sOO], which is exactly what we 
want! For multipliers, the correct scale factor (or more precisely, the 
"worst case" scale factor) is built in. The circuit diagram is given in 
Figure 26. 

Figure 26 

The scaled equation can be written down easily: 

(22) 

The + sign, of course, is determined by the input patching. 

Note that pots at the inputs to the multiplier are neither necessary nor 
desirable. Since the "worst case" scale' factor is.· built in, the output 
[xy/sOO] can never be larger than 1 unit, and the maxinrum value will be less, 
if the inputs do not peak simultaneously. Hence it would be poor practice to 
put pots at the input, which would only attenuate the output further. 

Incidentally, there are sound electrical reasons as well as mathematical 
reasons for not using pots at the input to a multiplier -- the use of pots at 
the input will result in serious loading errors on most multipliers. Although 
the electronic construction of the components is beyond the scope of this 
chapter (see Chapter II), it is interesting to note that both electrical 
consideratio ns and scaling considerations lead to the same conclusion: 
multipliers should receive their inputs directly from amplifiers, not from 
pots. 
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We have seen that the output of a multiplier automatically has the "worst case" 
scale factor. However, if some other scale factor is desired, it can usually 
be obtained. Suppose, in the above example, we know on ~hysical or mathematical 
grounds, that the maximum value of the product is 200 ft , instead of the 
"worst case" estimate of 500, because x and y do not peak simultaneously. 
Then the desired output is [xy/200J, rather than [xY/500J. Can we obtain this 
scale factor without changing the scaling of the inputs [x/50] and (y/lO]? 
In most computers, the answer is~. The output scale factor can be modified 
by changing the feedback resistor, or by using pot feedback. Most multipliers 
provide some method of disconnecting the feedback resistor, so that an additional 
resistor may be patched in series with it, or a feedback pot may be used. 

In the present case, the output may be increased by the desired factor(5/2) 
by connecting a pot in the feedback path and setting the pot for (2/5). 
The circuit diagram is given in Figure 27: 

xl50J FB 

[-x/50] 

t-y/50] 

Figure 27 

2/5 

[ + xy l 
- 200J 

This patching does not violate the above-mentioned rule. that multiplier 
inputs should not be patched to pots, since this is a feedback connection, 
not an input connection, and the load on the pot is simply the built-in 
feedback resistor -- not the multiplier itself. (See Chapter II for details). 

e. Division Circuits 

Suppose we want to generate x/y, where the maximum values are given as 
Jxl ~ 50 lbs, and IYI~ 10 feet. How can the maximum value of x/y be estimated? 

Dividing the maximum value of x by the maximum value of y produces an 
"estimate" of 5 lbs/foot. This is clearly not a good estimate of the maximum 
value, since the ratio can get much larger than this, especially when y is 
small. However, we can draw one conclusion: if the maximum values of x and 
yare correct, then the maximum value of x/y must be at least SIbs/foot. 
For x must reach its maximum value (50 Ibs) at some time during the solution. 
At that moment, the value of the denominator y cannot be larger than its 
maximum value of 10 feet, so that the ratio must be ~ SIbs/foot at that time. 
Hence the maximum value is at least SIbs/foot, and may get much larger. 

Suppose we know, on physical grounds, that the actual maximum is 10 lbs/foot. 
Then the scaled output should be [X/lOy]. How can we obtain this output? 
The desired relation between input and output is, in unsealed form, 
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Substituting equivalent expressions in terms of scaled variables, we obtain 

~[x/5o] 
10 [y/lO] 

And, solving for the desired output: 

~ = (1/2) ~ 

(24) 

(25) 

From this scaled equation, it follows that we can obtain the desired output 
by multiplying the numerator by a pot-setting of (1/2), which leads to the 
diagram of Figure 28: 

[x/SOl 
1/2 

[- I~ y] [y/JO 
Ey/IO] 

Figure 28 

This circuit does not violate the rule against feeding a pot ,into a multiplier, 
as the numerator input actually goes into a resistor, rather' than into the 
multiplier itself. In most multipliers, the resistor used is the same one 
that is used as the feedback resistor for multiplication (See Chapter II 
for circuit details). 

Note that in the multiplication circuit, the output is either correctly scaled 
or too small; we can use a pot in the feedback to increase it if necessary. 
In the division circuit, the output is either correctly scaled or too large; 
we may use a pot in the input to decrease it if necessary. Since multiplica­
tion and division are inverse operations, this result is to be expected. 

f. Integrators 

Suppose we have the unscaled equation 

dz 
dt = x+y 

which leads to the following unscaled diagram: 

Zo 

__ : _ ........ [>----z-. _ 
Figure 29 
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Assume that lxl ~ 10; IYI ~ 5 and \zl ~ 2. Then the scaled computer variables 
will be [x/lO] , [y/S] and [z/2]. Substituting into Equation 26, we obtain 

(26a) 

Note carefully the bracketing on the left-hand side -- we have ~[Z/2] and not[dZ/ 2 dt' dt 
The square brackets serve to set off amplifier outputs, and there is no amplifier 
in the circuit whose output is proportional to dz. The expression ~[z/2]can be 

interpreted as the rate of change of the amplif~r output[z/2] . ~gte that no 
estimate was given for·the maximum value of dz, and none is needed, since dz 

does not appear as an amplifier output. 

Dividing both sides by -2, we get 

at dt 

~t [-z/2] = - { (5) (x/lO] + (~)[Y/51) 
Solving for the scaled output [-Z/2]: 

[- z/2] = - zo/2 - [[(5) [x/lO]+ (5/2) [Y/5]}dt 

(27) 

(27a) 

The co-efficients .on the right-hand side are greater than unity, so that we 
must use amplifier gains of 10. Separating these factors into gains and pot­
settings, we have 

This equation is almost in the right form. All that remains is to put the IC 
into the appropriate form -- that is, to write it as the product of a pot­
setting and reference voltage. Whenever reference voltage appears in a 
scaled equation, it is customarily written within square brackets, like an 
amplifier output. Hence the IC term should be written as -(zo/2) [+1] 7 

which shows that it is the product of reference voltage (which is 1 unit) 
and a pot-setting of (zo/2). Thus the final scaled equation is 

and the corresponding scaled diagram is given in Figure 30. 

+1 

1/2 

1/4 

Figure 30 
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The scaled equation can be made to look simpler if we write it in derivative 
form instead of integral form: 

~t Ez/j = -rO(1/2) [X/121 + 10(1/4) l!/~) (30) 

In this form, it says that the output of the integrator changes at a rate 
equal to minus the sum of the inputs. The scaled diagram can be drawn as 
easily from Equation 30 as from Equation 29. Note, however, that this form 
of the scaled equation does not include the Ie, which must therefore be scaled 
separately. However, this is easy enough to do. From Figure 30, we observe 
that the Ie pot-setting has the same scale factor as the integrator output 
itself. A little reflection will show that this will be the case for any 
integrator output, since reference voltage is regarded as I unit. The amplifier 
output is the ratio of the variable to its maximum value, the Ie pot-setting 
is the ratio of the initial value to its maximum value, and both are ~ 1 in 
magnitude. Incidentally, this last remark shows that the Ie pot-setting is 
always less than unity, if the output has been scaled consistently. 

Having verified that the Ie pot-setting will turn out reasonable, what can 
we say about the other inputs? In this case, the required co-efficients 
were obtained with gains of 10 and pot-settings of 1/4 and 1/2. Is this a 
special case, or will integrator gains always turn out reasonable in a 
practical problem? The answer is that we can, in general, a,ssure reasonable 
gains on amplifiers, but the method'is somewhat different for an integrator. 
This is because _the gain on an integrator does not merely determine the 
magnitude of the output, but determines how fast the output changes. For 
this reason, the magnitude of integrator gains is related to time scaling, 
that is, to the process of speeding up or slowing down the problem as a whole. 
Therefore, the question of the magnitude of the integrator gains will be 
deferred until the section on time-scaling. 

4. Outline of Scaling Procedure 

The previous section indicated the procedure for scaling the most commonly 
used individual components. This section provides a sequence of steps for 
"putting the pieces together" to scale an entire problem. 

a. Prepare an unsca1ed circuit diagram 
b. Prepare a Scaling Table, listing every variable that 

appears at the output of an amplifier 
c. Estimate the maximum value of each of the variables 

in the scaling table. 
d. Divide the variable by its maximum value to obtain the 

scaled computer variable, which will be ~ 1 in magnitude. 
The scaling table should contain 3 columns --- one for 
the problem variable, one 'for its maximum value, and one 
for the scaled computer variable. 

e. Prepare a scaled equation for each amplifier in the problem, 
following the procedure given in the previous section. 

f. Prepare a scaled diagram from the scaled equations, showing 
the scaled outputs and the necessary pot-settings and gains. 

5. A Scaling Example 

To illustrate the scaling process, consider the equation 

ax + bi + cx = 0 
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which was programmed, but not scaled, earlier in this chapter. This time, let us as­
sume specific parameter values and initial conditions: 

a = 25 
b = 50 
c 100 

x(O) 5 
x(O) = 0 

Note that no specific physical interpretation is given -- the equation might 
represent the oscillation of a spring-mass system with a 5-inch initial displacement, 
or an R-L-C circuit with an initial 5-volt charge on the capacitor. The emphasis is 
on the programming and scaling techniques, rather than on the physics of any particu­
lar system. 

Solving the equation for the highest derivative yields the equation: 

b 
x = -

a 
x _ c x 

a 
(32) 

and straightforward programming leads to the diagram of Figure 9. For convenience, 
Figure 9 is repeated here as Figure 31: 

b 
a 

c 
a 

. 
+X 

. 
-x +x 

Figure 31 

Having prepared the unsealed diagram, the next step is to prepare the 
scaling table: 

Problem Estimated Computer 
Variable Maximum Variable 

x 5 [x/5] . 
10 [x/lO] x . 
10 [-x/lO] -x .. 
40 [x/40] x 
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Note that there are four entries in the scaling table -- one for each ampli­
fier in the diagramo (In practice, most programmers would not bother to list x and 
-; separately, but, since they both appear as amplifier outputs, they are listed here 
for completeness o Certain "short cuts" will be discussed later)o 

Although this chapter is not concerned with how the estimates for maximum 
values are obtained, it should be noted that once maximum values for x and x are known, 
the maximum value for Ox may be estimated from equation 32, since x appears at the out­
put of a summero 

The scaled equations may be easily written down, following the procedures of 
the previous section: 

The Sunnner 

The unsealed equation for the summer output is Equation 32: 

b 0 c x=--x--x 
a a 

and substitution of computer variables into this equation gives Equation 33: 

40 [·x/40] = - flO ~ [x/lO] + 5 £ [x/5]} 
a a 

(33) 

Solving for [x/40], we obtain 

[·x/40] = - {(:a)[x/lO] + (~a)[x/5]J (34) 

Examination of the factors in parenthesis indicates that they are less than 
unity, so that no gains of 10 are required. 

The Integrators 

The unsca led equation for the integra tor producing x ',is: 

dx 
- = x 
dt 

substituting computer variables: 

d 5 dt [x/5] = -10 [-x/lO] 
d 

Solving for dt [x/5]: 
d 
dt 

[x/5] = -2 [~i/lO] 

(35) 

(36) 

Separating the factor on the right into the product of a pot-setting and a 
gain, we obtain: 

d 
dt [xIs] - 10 (0.2) [-x/lO] (37) 

The IC on this integrator must be xo/5, this may be obtained from refere'nce 
voltage and a pot set to (xo/5). We may write a scaled equation for the I.C. 

(38) 
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This equation shows that we need minus reference on the I.C. pot to produce 
a positive I.C. As pointed out in the previous section, the I.C. pot-setting has the 
same scale factor as the amplifier output. 

The integrator producing -x has the unscaled equation: 

dx •• 
dt = x (39) 

After appropriate manipulation of signs and scale factors, this becomes: 

The Inverter 

d[-x/lO] 
dt 

10(0.4)[ ;;/40] (40) 

Since the input and output of the inverter have the same scale factor, the 
scaled equation is: 

[x/lO] = -1 [-x/lO] (41) 

This equation gives the output of the inverter in terms of its input [-x/Ie 
In practice, the scaled equation would probably not be written, but it is given here 
for completeness. 

b 
40 

c 

The scaled circuit diagram may now be drawn from the scaled equations: 

-80 

Figure 32 

6. Alternative Circuits 

Earlier in this chapter, the second-order equation ax + bi + cx = 0 was 
programmed in three different ways with a summer, with a pot-feedback amplifier, 
and with a multiple-input integrator. The previous section illustrated the scaling 
of the circuit with the summer. This section will illustrate the scaling of the al­
ternative circuits, covering only those parts of the circuit that are different from 
the circuit of Figure 32. 
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The Pot-Feedback Circuit 

The unscaled diagram for the pot-feedback circuit is given in Figure 11. 
A scaling table for this circuit looks exactly like the scaling table for the circuit 
with a summer -- the same variables appear at amplifier outputs, and, of course, the 
maximum values and scale factors are the same. 

The only difference is in the scaled equation for the high-gain amplifier 
itself. The unscaled equation is: 

•• 1 (b. ) x = - - x + cx 
a 

(42) 

and substituting scaled variables, we obtain: 

40[x/40J = - 1 (lOb [x/lOJ + Sc [x/SJ) 
a 

(43) 

This equation must be solved for [x/40J and written in the appropriate form for a pot­
feedback amplifier, that is, with a pot-setting proportional to a in the denominator. 
Solving for [x/40J, we obtain 

[x140J lOb [x/10J + Sc [x/SJ 
40a 

The numerical values of the coefficients are: 

lOb = 500; Sc = SOO; 40a = 1000 

(44) 

To convert these coefficients into pot-settings, we divide both numerator and denom­
inator by 1000, giving the final scaled equation: 

r~/40J 

and the scaled diagram: 

c 
200 

[ i/101 

0/25 
x/5] 

(b/100) [x/lO] + (c/200)[x/S] 
(a/2S) 

Figure 33 
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The Multiple-Input Integrator 

The circuit diagram given in Figure 12 shows another method of programming 
the problem, with a net saving of one amplifier. The scaling table for this circuit 
will therefore contain fewer entries -- there i's no need to estimate a maximum value 
for X, since it does not appear as an amplifier output. The scale factors for x and 
x are, of course, the same as before. Taking the unsealed equation: 

x = - 1 (bx + ex) 
a 

we substitute computer variables to obtain: 

10 dd [x/lOJ = -1 (lOb [x/10J + 5c [x/5J) 
t a. 

(46) 

(47) 

Note the form of the left-hand side. The equation must be put in the right form for 
an integrator, so that the left-hand side must be the rate of change of the output. 
Solving for this rate of change, we obtain: 

~t [x/lOJ = - [ (;) [x/lOJ +(~a) [xis]} (48) 

Since the factors in parenthesis are greater than unity, we must use gains of 10, 
which gives the scaled equation: 

~.t [x/lOJ = - [ 10 (l~a)[x/lOJ + 10(2~a)[x/5J} 
which leads to the circuit diagram in Figure 34. 

+1 

b 

100 

c 
20a 

Figure 34 

(49) 

Note that the second integrator produces [-x/5J rather than [+x/5J; hence 
+ Reference is used as input to the I.C. pot. 

7. Time Scaling 

The scaling process described in the previous sections is called magnitude 
scaling or voltage scaling; its purpose is to assure that all amplifier outputs cover 
the appropriate range (from a to 1 unit in magnitude). It is equally important to 
assure that the rate of change of the computer variables is consistent with the dy­
namic properties of the computer, and that the solution takes place in a reasonable 
amount of time. 
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Many physical processes take hours or days to complete, and many take only 
a few milliseconds or microseconds. To assure that the computer simulation takes 
place in a reasonable length of time, it is necessary to have some method of speeding 
up or slowing down the solution~ that is, a method of scaling the independent variable 
(time) as well as the dependent variables (the amplifier outputs). 

It is customary to distinguish between time in the original problem and 
time on the computer by using the letters t and T respectively. Thus: 

t = "problem time" = the independent variable in the original 
problem statement. 

'T = "machine time" or "computer time" = the independent variable 
on the computer. 

In time scaling, as in magnitude scaling, the computer variable is made proportional 
to the corresponding problem variable: 

'T f3t 

where ~ is the time-scale factor, Solving for ~: 

~ = r = computer time 
t problem time 

(50) 

(Sl) 

Thus ~ has the units of computer time (usually seconds) divided by problem 
time. If problem time is also measured in seconds, then ~ is dimensionless. In this 
case, the magnitude of ~ indicates the factor by which the problem is speeded up or 
slowed down. If ~ > 1, then the solution on the computer is slower than the original 
process; if ~ < 1, the computer solution is faster than the original process. For 
example, if ~ = 5, then, from equation 50, we see that 'T = St. When t = 1 second, 
T = S seconds, i.e. an event that takes place in one second in the original problem 
requires S seconds on the computer, the solution is slowed down by a factor of S. 

How does one instrument a time-scale change on the computer? Examination 
of the standard analog-computer components indicates that only one of them has any­
thing to do with time -- the integrator. For all other components, the relation be­
tween the inputs and outputs can be described without mentioning time; therefore all 
components other than integrators are unaffected by time-scaling. 

If we examine the input/output relation for an integrator, we find that it 
integrates with respect to machine time 'T, not problem time t. 

Hence, if we want an output proportional to a variable x, the input should 
be proportional to dx/d'T, rather than dx/dt. Since the problem is stated in terms of 
dx/dt, we must find a way of converting one type of derivative into another. 

From equation SO,. it follows that: 

dx 1 dx 
dT = f3 dt 
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From this equation, we see that if a voltage proportional to 
input to an integrator, we need only multiply the integrator 
preceding it) by l/~ to convert from dx/dt to dx/dT. 

dx/dt is available as an 
gain (or the pot-setting 

dx dx [:> __ dt __ ~()~_~ __ ~I[C> ___ -_X __ _ 

Figure 35 

Thus we arrive at the general rule: to speed up or slow down the computer 
solution by a factor ~, every integrator input must be divided by ~. 

This factor l/~ is in addition to the voltage scale factors and other co­
efficients required by the problem. For example, suppose maximum values have been 
estimated for x (= dx/dt) and x. If x is scaled as, say, [x/50J and x is scaled as 
[x/2], then we may write a scaled equation starting from equation 52 as follows: 

dx 1 dx 1-. 
=--·-=-x 

d,. ~ dt ~ 

Substituting the appropriate scaled variables, 

2 • :1' [x/2J = ~O [x/50J (53) 

d 
Solving for Of [x/2J which is the rate of change of the integrator output we obtain 

d [x/2J = 25 [x/50] 
dT ~ 

(54) 

If the signs of x and x are as given in Figure 35, we must multiply by -1 to obtain: 

~ [-x/2] = - (25) [x/50J d,. ~ 
(55) 

which is in the correct form for an integrator output. The factor 25/f3 in parenthesis 
is the product of the pot-setting and the integrator gain. If it is greater than one, 
we may use an appropriate input gain on the integrator. For example, if f3 = 100, then 
the pot-setting 25/f3 is less than one, and a gain of one may be used, leading to the 
final scaled equation: 

d [-x/2] = _1(25) [x/50] (56) 
d1' f3 

If f3 = 10, then 25/f3 is greater than one but less than 10. We may re-write the 
scaled equation as follows: 

d [-x/2J = -10 (~) [x/50J (57) 
dT 10f3 

which shows that a gain of 10 is necessary (see Figure 36) 
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Figure 36 

Note that the pot-setting is labeled on the circuit diagram as 25/l0~ (or 
it may be reduced to 5/2~). Merely writing the numerical value (.2500) on the cir­
cuit would not reveal the time-scale factor explicitly. 

So far, the question of choosing the time-scale factor has not been dis­
cussed. Although a number of methods are available, the approach that has proved 
easiest in practice is to choose the time-scale factor to make the pot-settings and 
gains at integrator inputs reasonable. In section 3, we saw that proper magnitude 
scaling wou'ld produce reasonable gains on most components, although occasionally 
an auxilliary adjustment of the scaled equation is necessary (e.g. the pot-feedback 
amplifier). The question of reasonable gains on integrators was left open. Time 
scaling provides the key to obtaining reasonable integrator gains. 

Since the magnitude of an integrator input determines the rate of change 
of its output~ large integrator gains indicate a fast solution, and small integrator 
gains indicate a slow solution. Hence, dividing all integrator inputs by the same 
factor to make the gains reasonable will also make the solution speed reasonable. 
Note that the same time-scale factor must be used for every integrator, since the in­
dependent variabl~ time, is common to all integrators in the problem. The recommended 
time-scaling procedure is therefore as follows: 

1) Program and scale the problem without regard to time-scaling. 

2) For each integrator input (except I.C. inputs) determine the 
necessary coefficient (i.e. the product of pot-setting and gain) from 
the scaled equation. Estimate its numerical value. 

3) Examine the numerical values of all such coefficients, and 
determine a time-scale factor that will make them all "reasonable". 
A good general rule is that the majority of these coefficients should 
be between 0.1 and 5.0e 

4) Re-write the scaled equations for the integrators to show the 
factor l/~ in the pot-setting, and separate each coefficient into the 
product of a pot-setting and a gain, as required. (See Equation 57 as 
an example). 

8. Scaling the Automobile Suspension System. 

The Automobile Suspension System, which was programmed on Page 91 without 
scaling, provides an excellent example of the procedures for both voltage and time 
scalins. The equations are: 
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Programming these equations led to the circuit of Figure 19. For more detailed pro­
gramming and scaling, we need specific numerical values for the parameters. Typical 
values are: 

Ml 25 slugs; Kl = 1000 1b/foot 

M2 2 slugs; K2 = 5000 lb/foot 

x3 5 inches = 5/12 foot 

20 ~ D ~ 200 lbs/foot per second. 

Under these conditions, the maximum values of xl and x2 will be approxima­
tely one foot, and the velocities xl and x2 will have maximum values of approximately 
5 feet/sec and 50 feet/sec respectively. 

The scaling table for Figure 19 looks like this: 

Problem Estimated Computer 
Variable Maximum Variable 

xl 1 foot xl 

xl 5 feet/sec x
l

/5 

x2 1 foot x2 
x2 50 feet/sec x2/50 

xl - x2 
2 feet (xl - x2)/2 

xl - x 50 feet/sec (xl - x
2

)/50 
2 

x
2 - x3 2 feet (x2 

- x
3
)/2 

Note that there is one entry in the scaling table for each amplifier in 
Figure 19, except that the inverter has been omitted. 

The maximum values of xl, xl' x2, and x2 may be regarded as given data. 
The maximum values of the differences xl - x2 and xl - x2 were obtained as I~orst 
case" estimates, based on the maximum values of xl' x2 ' ~l' and x2 • 

The scaled equations for the summing amplifiers are straightforward: 

(60) 

(61) 

(62) 
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The reader should be able, by now, to derive these equations by starting 
with ,the .unsca17d equations (e.g. xl - x2 = xl - x2) and making appropriate substitu­
tions ~ Note that the' [-1] in brackets in Equa tion 61 represents negative referen ce 
voltage, and indicates the source of this constant term, namely reference voltage 
connected to a pot. 

The scaled equations for the integrators, without time scaling, are given 
below: 

(63) 

(64) 

(65) 

(66) 

Examining the coefficients in parenthesis, we see that they are all large: 

(2Kl/~) = 16 

(lOD/~) = 40 

. (D/~) = 50 

(Kl/2~) = 20 

(K2/25Hz> = 100 

Including the gains of 5 and 50 in equations 65 and 66, we have a total of 
seven integrator inputs, all of which are greater than one. The largest gain is 100; 
the smallest gain is 5. A value of f3 = 10 will make most of these .gains "reasonable", 
i.e. between 0.1 and 5.0. Dividing the integrator inputs by 13, and separating each 
coefficient into a pot-setting and a gain, we arrive at the final scaled eqw tions: 

(67) 

X 

+ 10(K
2

/25OM
2
f3)[ 3 (68) 
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(69) 

(70) 

These equations are now in proper form for computer solution. All pot­
settings are less than. one, and only gains of 1 and 10 are used. The scaled cir­
cuit diagram is given in Figure 37. 

-I 

1/2 

Figure 37 

9. Short Cuts 

The method of scaling illustrated above has the virtue of being systematic 
and indicating the logical equivalence between the scaled equations (which are the 
equations actually solved on the computer) and the original problem equations. How­
ever, it can become quite tedious in large problems, and, in practice, it is possible 
to scale many amplifier outputs without writing scaled equations. For example, we 
have already seen that an inverter virtually "scales itself", and a scaled equation 
is not necessary. It is also possible to scale many other outputs merely by inspec­
tion of the circuit diagram. For example, consider the portion of a circuit diagram 
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given below. 

~_-i_/2_~ __ ~6~ ______ IT>_[_+X_/_5] __ 

Figure 38 

The problem is to calculate the value of the pot-setting necessary to recon­
cile the scale factor of x with the scale factor for x. A "common-sense" rule is 
that the pot-setting must contain the- ratio of the two scale factors. This rule might 
be stated informally as follows "cancel the incoming scale factor and introduce the 
desired output scale factor". In the diag~am of Figure 38, it is fairly obvious that 
we need to multiply the input by 20 (to cancel the incoming factor of 1/20) and divide 
by S (to introduce the desired scale factor of lIs at the output). Hence the pro­
duct of the pot-setting and the gain should be 201S~ ~ 4/~, including the time-scale 
factor. Thus the diagram may be scaled directly, giving Figure 39a or 39b depending 
on the numerical value of ~. 

~ t-xI20] 

=tI> [-itI201 

4/~ r J I[]) l+x/5 Ot------- -
Figure 39a. 

4/IO~ 10[]) [+X/5] Ot----- -

Figure 39b. 

Note that the product of the pot-setting and gain is the same in Figure 39a 
and 39b. These are exactly the scaled diagrams that would be obtained by writing 
the scaled equations: 

d 
dT [x/sJ - (4/~)[-x/20J (7l-a) 

and 

~T [x/sJ = - 10 (4/l0~) [-x/20J (7l-b) 

The "ratio of scale factors" method may also be applied to amplifiers with 
multiple inputs. Consider, for example, the integrator producing xl/s in Figure 37. 
The unscaled diagram for this integrator is given in Figure 40: 
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Figure 40 

Replacing these unsealed variables by the corresponding scaled var~les, we 
obtain Figure 41. [ x1-; 21 ? 

l-------t 

Figure 41 

The first pot must contain, besides the problem parameters Kl and Ml , the 
ratio of the two scale factors involved. We must multiply the pot-setting by 2 to 
cancel the input scale factor and divide by 5 to introduce the output scale factor. 
Hence, including time-scaling, the pot-setting should be 

and the second pot-setting can De similarly calculated: 

Finally, numerical calculation of these coefficients shows that with ~ = 10, 
both coefficients are between 1 and 10. Therefore, they should be divided by 10 
and gains of 10 used on the integrator, thus keeping the product of pot-settings and 
gains unchanged. This leads to Figure 42. 

Figure 42 

These are the same pot-settings obtained by writing scaled equations (com­
pare Figure 42 with Figure 37 and Equation 67). In fact, the manipulations carried 
out in the "ratio of scale factors" approach are equivalent to those involved in 
writing a scaled equation, but they are performed on the diagram, rather than on the 
equations o 
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Whether the programmer writes a scaled equation or not for a given ampli­
fier is a matter of personal preference. He should, however, understand scaled equa­
tions, and whatever method of scaling he uses, he should at least be able to justify 
his procedure by writing a scaled equation if called upon to do so. ----

Note, incidentally, if Figure 37 is scaled by the "ratio of scale factors" 
method, it is possible to write down an equation such as equation 67 by inspecting 
the scaled inputs and outputs of various amplifiers. The scaled equation obtained 
in this manner may then be reduced by cancellation, and the result will be either one 
of the original problem equations or an identity like x + y = x + y. Note that the 
process of reducing by cancellation is simply the opposite of deriving the scaled 
equation from the original equation. This process can be used as a check against 
arithmetic errors and sign errors in the original scaling process. 

In practice, both the scaled equation method and the "ratio of scale fac­
tors" method are in wide use by experienced programmers. Some programmers prefer to 
write a scaled equation for every amplifier in the circuit (usually omitting the 
inverters), while others prefer to not to write scaled equations at all, or to write 
them only as a check. 

10. Alternative Approach to Scaling 

In section 2, the convention was established that reference voltage would 
be used as the unit of measurement. As a consequence, all amplifier outputs, and 
indeed all signals on the computer, are ~ 1 in magnitude. This convention is not 
universally adopted, and it is worth while considering several alternative approaches, 
since many of the problems in the existing literature are scaled with different nota­
tion. In this section, two alternative approaches ,will be considered • 

Alternative :fll. This alternative consists of measuring amplifier outputs in volts, 
regardless.of the computer reference level. The scaled equations will assume dif­
ferent forms, depending upon the reference voltage. The scaled variables will be 
larger, but the pot-settings will be numerically the same as those obtained by the 
procedure recommended in this chapter. (This last fact should not be surprising -­
since a pot-setting is the ratio of output voltage to input voltage, and this ratio 
is independent of the units of measurement.) 

To illustrate the differences between the recommended approach and the first 
alternative, consider "a 100-volt computer. From Equation 11, section 2, 

Amplifier 0 tp t - (Reference)(Problem Variable) 
u u - M8ximum Value of Problem Variable 

If reference is regarded as 100-volts rather than 1 unit, then all amplifier outputs 
will be numerically 100 times larger than with the method recommended in this chapter. 
Of course they will not be physically larger -- one man will refer to an amplifier 
output as 80.00 volts and the other will refer to it as 0.8000 units, but the ampli­
fier output is physically unchanged. 
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As an example of scaling in volts, consider the second-order equation 
ai + bx + ex = 0, which was scaled in Section 5. If computer variables are measured 
in volts rather than units, then the scaling table becomes: 

PROBLEM ESTIMATED COMPUTER VARIABLE 
VARIABLE MAXIMUM (IN VOLTS) 

x 5 feet [20 x] (not x/5) 

x 10 feet/sec. [10 x] (not x/10) 

x 40 feet/sec. 2 
[2.5 x](not x140) 

Note that the computer variables are numerically 100 times larger than be­
fore, and that they reach a maximum of 100 volts when the corresponding problem vari­
ables are at their maximum values. Scaled equations may be derived in the usual man­
ner, and are given below: 

[2.5 x] = - {(~a) [10 x] + (~a) [20 xJ} (72) 

d 
[20 x] - 10 (0.2) [-10 x] = dt (73) 

[20 x ] = - (x /5) [-100] 
0 0 

(74) 

d 
[-10 xJ = - 10 (0.4) [2.5 x] dt (75) 

Comparing these scaled equations with equations 34, 37, 38, and 40 respec­
tively, we see that the pot-settings and gains are the same, but the amplifier outputs 
are numerically 100 times larger. The corresponding circuit diagram is given in Fig­
ure 43. 

b 
40 

c 
80 

~Ioi] -100 

-Ioxl 

Figure 43 

-123-



This is the same as Figure 32, except that the amplifier outputs and the 
reference voltage input to the I.C. pot are numerically 100 times larger. (On a 10-
volt computer, they would be 10 times larger). Both circuits will, of course, yield 
the same results when translated back into problem variables. For example, if the 
output of the second integrator at a given instant is 0.8000 units or 80.00 volts, 
then, reasoning in units, we obtain: 

[xis] = 0.8 .'. x = 5 x 0.8 4 feet. 

and reasoning in volts, we obtain: 

[ 20x] == 80 _ 80 == 
x - 20 4 feet. 

Scaled equations for nonlinear elements contain an additional complexity 
when computer variables are measured in volts. For example, the output of a multi­
plier is not simply the product of the inputs, but rather the product of the inputs 
divided by reference voltage. Thus, on a 100-volt machine, the output of a multiplier 
with inputs x and y would be xy/lOO. This factor of 100 is necessary because the 
unit is designed so that when both inputs are 100 volts, the output will also be 100 
volts. 

The factor of 100 complicates the scaling of a multiplier. For example, 
suppose it is desired to multiply two variables x and y with maximum values of 50 and 
10 respectively. The scaled voltages would be [ 2 xJ and [10 y], and the output 
(which has a "worst case" maximum of 50 x 10 = 500) would be scaled as [xy/5]. The 
scaled equation would then be 

[xy/5] ::; [2 x][lO y] 
100 (76) 

Compare this to the more straightforward equation 22; in terms of units, 
one simply multiplies [x/50] by [y/lO] to obtain [xy/500]. 

In summary, scaling in terms of volts will lead to different (and some­
times more complicated) scaled equations. All amplifier outputs will be numerically 
larger, but pot-settings will be the same. Of course, the final solution, stated 
in terms of problem variables, will be the same. 

The principal advantage of scaling in volts, rather than in units, is that 
the programmer is using a familiar unit of measurement that is in common use through­
out the electronics industry. Interfacing the computer with external devices, such 
as transducers, oscillators, meters, and other devices is simplified, since these de­
vices are generally calibrated in volts. The programmer who scales in units has to 
go through a mental translation from units to volts every time he connects or adjusts 
an external device. Note that this applies only to external meters, recorders, etc. 
Readout devices such as scopes, plotters, meters, etc. which are built-in or are in­
tended for use only with a given computer should be calibrated in units. Most DVM's 
are designed this way, so that when connected to reference voltage, they display 
+ 1.0000, i.e. one unit. The trend in modern, large-scale computers is toward built­
in plotters, scopes, etc. If these are regarded as an integral part of the machine, 
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they can be calibrated in terms of the computer reference voltage, and labeled in units, 
rather than volts. 

Scaling in terms of units has several advantages, of which the most signifi­
cant are given below: 

1. Scaling is machine-independent. The same scaled equations and scaled 
diagrams result for any machine. This is the reason originally given 
in section 2 for using units, and is in line with the general trend 
(in both digital and analog computation) toward programs that are less 
oriented toward a given machine. 

2. As mentioned above, most DVM's are calibrated in units. The programmer 
who thinks in terms of volts must distinguish between an amplifier reading 
of 39.82 volts and a pot-setting of .3982, both of which are displayed 
as +.3982 on a 4-digit DVM. In terms of units, the decimal point is cor­
rectly placed in all cases. 

3. Scaling of nonlinear devices is simpler. For example, the scaling of 
products, quotients, squares, and square roots is free from extraneous 
factors of 10 or 100, which have nothing to do with the problem variables. 

4. Since reference is 1 unit, the scaling of pots connected to reference 
voltage is somewhat simpler. For example, an I.C. pot always has the 
same scale factor as the integrator output itself, which is not true 
if volts are used instead of units. 

Alternative #2. 

This is really a minor variant on the recommended procedure, rather than a 
genuine alternative. In this approach, a computer variable is regarded not as a volt­
age, but as a dimensionless variable (a "pure" number) between - 1.0000 and + 1.0000. 
A variable with a maximum value of 5 feet would be represented on the computer by the 
"dimensionless" or "normalized" variable [xiS]. 

With this approach, the scaled equations are scaled computer diagrams will 
be the same as those produced by measuring voltages in units instead of volts. In 
other words, the difference between this lIalternativell and the recommended procedure 
is purely psychological. Nevertheless, the difference can be important, since it 
goes to the heart of a person's basic attitude toward an analog computer. 

If one thinks of the analog as an electrical model, or simulator of a physi­
cal system, then it is desirable to think of computer variables as voltages. It turns 
out that scaling is simplified if we use somewhat unconventional units (dekavolts, 
hectavolts), but the voltages lose none of their physical or electr.ical significance. 

If, on the other hand, one regards the machine as a computer, receLvLng nu­
merical information (in the form of pot-settings, for example), and producing numeri­
calor graphical output, then this "alternative ll approach becomes applicable. Note 
that this is very similar to the way one thinks of a "number" in a digital computer 

the digital programmer generally regards a piece of data either as a "pure number" 
or as a bit-pattern, but he rarely, if ever, concerns himself with the physical "meaning" 
of these bits -- i.e. in terms of whether or not certain transistors are conducting, 
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or whether a given core is magnetized. 

Both approaches are legitimate, and since it makes no practical difference 
in scaling, the programmer may adopt either option. 

CO EQUIPMENT ASSIGNMENT 

Before the scaled problem can be put on the computer, it is necessary to 
assign to each component (amplifier, pot, multiplier, etc.) a number, or address, 
consistent with the numbering system for the particular computer used. For example, 
one computer may have 100 amplifiers numbered 00-99, while another may have 20 ampli­
fiers, numbered 1-20. Information on the number of components in a computer, their 
locations, and addresses, is found in the Reference Handbook for that computer. 

Component addresses should be written on the scaled diagram, inside the 
amplifier or pot symbol to aid in patching. In addition, it is helpful to list the 
components in assignment sheets, which provide the operator with the necessary infor­
mation for pot-setting, checkout, etc. in tabulated form. The use of these assign­
ment sheets is described more fully below. 

D. DOCUMENTATION 

An important part of any analog simulation is recordkeeping. A reasonable 
compromise must be reached between the extremes of inadequate documentation on one 
hand, and excessive paperwork on the other. To provide the programmer and operator 
with sufficient information to carry through the simulation efficiently, and to es­
tablish confidence in the validity of the final results, it is recommended that the 
following information be combined in order, in a single place: 

1. The original, unscaled problem equations, together with the values 
(or expected ranges of values) of all parameters. 

2. The unscaled circuit diagram. 
3. The scaling table. 
4. The scaled circuit diagram, and scaled equations. 
5. The Potentiometer Assignment Sheet (Pot Sheet). This should contain 

the following information for each pot: 
a. Its number (address). 
b. Its setting in terms of problem parameters (e.g. 2Kl/50Ml~). 
c. Its numerical value (e.g. 0.1600) 

Note that the numerical values themselves do not appear on 
the circuit diagram. The setting in terms of problem parameters 
is what is needed on the diagram, so that the programmer or opera­
tor can see the relation between parameters and pot-settings at a 
glance. Pots that do not contain problem parameters, but only scale 
factors, may be indicated on the diagram as in Figure 27 (e.g. 1/2). 

6. The Amplifier Sheet. This should contain the following information for 
each amplifier: 
a. Its address. 
b. The type of amplifier (e.g. summer, integrator, high-gain, inverter) 
c. The output variable, including sign and scale factor (e.g. -x/50) 
d. Check calculations (see next section). 
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Figure 44: Program for Auto Suspension Problem, 
Including Programming Errors 
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ELECTRONIC ASSOCIATES INC 

EDUCATION 8 TRAINING GROUP 

TR - 48 AMPLIFIER ASSIGNMENT SHEET 

-YfttJAs- AOO- A23 
8vfo Sv...s p~",.s /;'"", DATE PROBLEM , , 

/ 
STATIC CHECK 

AMP OUTPUT 
NO FB VARIABLE CALCULATED MEASURED NOTES 

DERIV OUTPUT DERIV OUTPUT 

00 

01 L ('<~-i.')/SO 
02 5 ~,/S 
03 J -)I., 
04 L (X,-X~ )/Z 

O~ L (x.:) -:l.Z)/Z 
06 f -Xl. /.5"0 

07 .r -tXt? 

08 ~ 

09 ~~ --

ELECTRONIC ASSOCIATES INC. 

EDUCATION 8 TRAINING GROUP 

TR-4B POTENTIOMETER ASSIGNMENT SHEET . 
poa - P29 

DATE ..3//~A'".r PROBLEM l1uto Su~P~".!I;O" 
7 , 

SETTING STATIC SETTING POT PARAMETER CHECK POT 
NO DESCRIPTION STATIC OUTPUT RUN NOTES NO 

CHECK VOLTAGE NUMBER I 

00 2. Xl /..5""O/YI,//l • /600 00 

01 o JfTI ,/3 · 8006 01 

02 5),8 • $'"000 02 

03 Ve. , So 00 03 

04 }t.J Je. ./OB3 04 

O~ 1/,0 ./000 05 

06 ;/G .4'"000 06 

07 o/IOrTl 2 fi /.000 07 
r-. 

08 ~/;8 .$"000 08 

09 09 

10 K,I2.~om~ ,B ·Zooo 10 

II Kl ) 2.,$"0 h1,l .6' /.000 II 

'2 V.z 
, 

.0000 12 
, 

13 13 

14 14 

'--
15 - ~ ....,. 15 

- -----~ 
....... ~ 

Figure 45. Pot Sheet and Amplifier Sheet for the Auto Suspension Problem 
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With this information available in a single place, the patching, checkout, 
and operation of the computer, and the interpretation of results can be carried out 
much more efficiently and quickly. 

E. STATIC CHECK 

1. Need for Static Check 

In the process of programming, scaling and patching a problem, numerous op­
portunities for error arise. Since even one error in a program can invalidate the 
entire result, it is absolutely necessary to detect and correct these errors before 
actual computation starts. 

On moderately large problems (over 100 amplifiers), it is very rare that 
the entire program will be completed without error. Even on fairly small problem 
(50 amplifiers or less), an experienced programmer still may make a mistake or two. 
Component malfunctions occasionally occur, even with well-maintained equipment, and, 
again, one faulty resistor can invalidate the entire result. 

Occasional programming errors and component malfunctions will cause no harm 
if a systematic checkout procedure is adopted that will assure their detection. Only 
if this is done can a programmer have confidence in the correctness of the results. 
This section describes in detail the most commonly accepted checkout procedure: the 
static check (sometimes called static test). 

This procedure will be illustrated by applying it to the Automobile Suspen­
sion problem, which has been programmed and scaled above. 

A complete program for the Auto Suspension System, including pot and ampli­
fier sheets, is given in Figures 44 and 45. A number of programming errors have been 
deliberately included: 

setup: 

1. The term x2 - xl has the wrong sign. An inverter has been omitted. 
(Compare Figure 44 with the correct program in Figure 37). 

2. Amplifier 03 (the integrator producing -Xl) has the wrong input gain. 

3. The numerica.l value of the setting on 004 has been miscalculated. 
(If x3 = 5/12 foot, then x3/2 = .2083). 

In addition, let us assume the following sources of error in the machine 

4. The patching connection from the output of P05 to the gain of 1 on AOI 
has been omitted. 

5. The input resistor on A07 is defective. 

These errors and malfunctions are typical of the difficulties encountered 
in programming and running an analog problem. A systematic check must locate all 
such errors, since a single error (or component malfunction) can make the enti~ 
simulation invalid. 
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The standard check procedure, known as the static check, or static test, 
is divi.ded into two parts: 

A program check, to determine whether the program (i.e. the circuit dia­
gram, pot sh~ets, and amplifier sheets) actually represents the original 
equations. The program check should detect the first three errors listed 
above. 

A circuit check, to determine whether the actual computer setup corres­
ponds to the program. The circuit check should detect the remaining 
sources of error (i.e. mis-patching, faulty components, etc.). 

In practice, the two checks are closely related; the calculations made in 
the program check serve as the basis for the measurements made in the circuit check. 
I.!1 both checks, the computer is put in the RESET or INITIAL CONDITION mode, establishing 
t~st signals at the outputs of integrators, and calculating (or measuring) the outputs 
produced at other points in the circuit. 

2. Program Check 

The program check starts by assuming arbitrary values for all.integrator 
cutputs~ These values should, of course, be within the range of values for which 
,::he problem was scaled, since otherwise, they would correspond to overloads at the 
integrator outputs. In addition, they should be chosen to avoid producing either 
o'verloads or extremely small outputs any where in the circuit. 

In the auto suspension problem, there are four variables appearing at inte-
6rator outputs: Xl'· xl' x2 ' and x2 • Let us start by assuming values for these four 
variables: 

Xl =+ 0.8 feet 

xl + 3 feet/sec. 

x
2 

= + 0.5 feet 

x
2 

=+ 35 feet/sec. 

These are original problem variables, and the units are t~e original pro­
blem units (e.g. feet and feet/sec.). Each of these problem variables corresponds 
to a computer variable (an amplifier output) measured in analog units: 

A02 + *1/5 = + 0.6 unit 

A03 = _. xl = - 0.8 unit 

A06 - - x2/50= - 0.7 unit 

A07 = + x = + 0.5 unit 
2 

These assumed values form the starting point for two sets of calculations; 
one set will be,. made from the program (i. e. circuit diagram and pot-sheet) and the 
other from the original, unsealed eguations. The results of the two sets of calcula­
tions will then be compared; if they disagree, it is an indication of a programming 
error. 
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Circuit Diagram for Auto Suspension System 
With Static Check Values written In 
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a. Calculations Based on the Program. The calculations based on the pro­
gram start with the assumed values of the integrator outputs (in'analog units) listed 
above. The only information needed for this series of calculations is a copy of the 
circuit diagram and the pot-sheet. 

Knowing the integrator outputs and the numerical setting on every pot, it 
is possible to calculate the ou~ut of every component in the circuit. For example, 
the output of A02 is + 0.6 unit. This output is connected to P05. From the pot­
sheet, we see that the setting on POS is 0.1000. Multiplying the pot input by the 
numerical pot-setting, we obtain the pot output (+ 0.06 unit). This is one of the 
inputs to A01, and the other input is - 0.7 unit from A06. Therefore the ou~~t of 
AOl will be -(- 0.7 + 0.06) = + 0.64 unit. Similar calculations can be made for 
every component on the diagram. For convenience, it is recommended that the calcu­
lated output be written on the circuit diagram as soon as it is calculated (See Figure 
46). 

In addition to the outputs of the amplifiers and 
tive of every integrator output should also be calculated, 
to check the programming and patching of the integrators. 
grator output is, of course, simply the sum of the inputs. 
initial derivative of integrator 02 (abbreviated D02): 

pots, the initial deriva­
since this is the only way 
The derivative of an inte-

Thus to calculate the 

D02 = + {lO (0.024) + 10 (0.5l2)} + 5.36 units/sec. 

Of course, the integrator output will not really be changing, if the system 
remains in the I.C. mode. The physical meaning of D02 is that if the computer were 
put into the OPERATE mode at this point, the output would initially decrease at the 
rate of 5.36 units/sec. In practice, there is a simpler and more accurate way to 
measure this derivative, which will be discussed below when the circuit check is 
covered. 

Note that all calculations so far have been based on the program, i.e. on 
the circuit diagram and the numerical settings on the pot sheet. The person making 
these calculations need not know anything about the original problem variables or the 
original equations. 

b. Calculations Based on the Original Problem o Once these calculations on 
the circuit diagram are completed, they are set aside and another set of calculations 
is made from the original equations, in terms of the original problem variables. The 
same quantities are calculated (outputs of amplifiers and derivatives of integrators) 
but from the original data, without looking at the pot-sheet or amplifier sheet. 

The starting point for these calculations consists of the original problem 
parameters: 

25 slugs; Kl 

2 slugs; K2 

5/12 foot; D = 

1000 lb/foot. 

5000 lb/foot. 

200 lb/foot per sec. 

and the assumed values of the original problem variables: 
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Xl = + 0.8 feet 

xl =+ 3 feet/sec. 

x2 =+ 0.5 feet 

x2 =+ 35 feet/sec. 

To calculate amplifier outputs from this set of data, we need to knOw the 
expression for each amplifier output in terms of problem variables. These expressions 
are listed in the amplifier sheet (see Figure 45). For example, the amplifier sheet 
tells us that the output of AOI is (x2 - xl)/50. Substituting the assumed values of 
x2 and xl into this equation gives: 

AOI = (x
2 

- xl )/50 = (35 - 3)/50 = 32/50 = 0.64 units. 

Similar calcuations can be made for the other amplifiers: 

A02 = xl /5 = + 0.6 units 

A03 = - xl = - 0.8 units 

A04 = (xl - x2)/2 =+ 0.15 units 

A05 (x
3 

- x2)/2 - - 0.0417 units 

A06 = x/50 = - 0.7 units 2 
A07 =+ x2 = + 0.5 units 

Note that these calculations can be made without looking at the circuit diagram or 
the numerical pot-settings listed on the pot sheet. The calculations are made by sub­
stituting the ass·umed values of the problem variables into the algebraic expressions 
listed on the amplifier sheet. It is recommended that these calculated values be 
filled in on the amplifier sheet in the space provided (see Figure 45). 

We have now calculated all amplifier outputs and listed them on the ampli­
fier sheet. To complete the check, we must calculate the derivatives of the integra­
tor outputs as well. For example, the output of A02 is + x

l
/5. Its derivative (in 

analog units per second) is therefore: 

Note that in order to translate the problem derivative into a machine derivative, we 
must divide by the time-scale factor~. The result is the derivative of the amplifier 
output .in analog units ~ second of machine time~. An expression for the derivative 
of any integrator output may be obtained by differentiating the output and. dividing 
by ~: 

A03 = + xl 
. D03 = + xl/~ . . 

A07 = - x2 
. D07 = - x /~ . . 2 

A02 = -*-1/5. • • 002 = - ~/5~ 
A06 =+:12/ 50 -·. D06 = + x2/50~ 
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We can now calculate these derivatives by substituting the known values in­
to these expressions. For example, we started out by assuming values for xl and x2 • 
Substituting these values, we obtain: 

The 

3 
D03 = + xl /f3 =. + 10 = + 0.3 units/sec. 

O / 35 / D 7 = - x2 13 = - 10 = - 3.5 units sec. 

expressions for D02 and D06 require knowledge of the highest derivatives xl and 
To calculate these, we must use the original unscaled equations: 

K 

xl = - ~ (xl - x2) - ~ (xl - x2) 

1000 200 
25 (0.8 - 0.5) - zs- (3 - 35) 

= 12 + 256 

I xl =+ 244 feet/sec.
2

1 

·x
2 

Kl K2 D (. - x ) - - M (x2 xl) - M (x2 - x3) M x2 1 
2 2 2 

1000 
(- 0.3) -

5000 (1 _ 2...) _ 200 (32) = 
2 2 2 12 2 

= + 150 - 208.3 - 3200 

X
2 

= - 3258.3 feet/sec.
2 

Thus the calculated derivatives become: 

D02 = - ·xl /5f' = - ~~4 = - 4.88 units/sec. 

D06 + x2/50f' = + 6.5166 units/sec. 

The calculated derivatives, in units/sec. should be listed in the appropriate 
places on the amplifier sheet, along with the amplifier outputs. 

C CI DETECTION OF ERRORS 

We have now calculated every amplifier output, and the derivative of every 
integrator in two ways, one based on the circuit diagram and one based on the original 
equations. Comparing the two should detect any errors in programming. 
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When the calculated values of an amplifier output or derivative disagree, 
the error can be located by working backward through the circuit. If the outputs of 
a component do not check, we examine the inputs. If the inputs check, then the error 
lies in the programming or scaling of that particular component. If the inputs do 
not check, we apply the same process, working backward until the error is isolated. 
For example, the derivative D02 was calculated on the diagram as + S.36 units/sec., 
while the calculation from theoriginal equations yields - 4.88 units/sec. This 
amplifier receives inputs from AOI and A04, and the calculated values for these 
outputs agree. The trouble must therefore lie in the programming of the xl equation. 
If we compare the scaled equation for d/dT[xl/S] with the original equation for xl, 
it becomes clear that POI should have the input (xl - * )/S; so that an inverter 
is necessary. Adding this inverter to the circuit, we ~ind that the output of POI 
becomes - 0.S12 units, and the calculated value of D02 becomes - 4.88 units/sec., 
as it should be. 

Comparison of the two calculated values for D03 will indicate a factor-of­
ten difference, and inspection of the diagram indicates that a gain of 1 is needed, 
rather than 10. 

The calculated values of D06 also show disagreement. Checking the three 
inputs to this amplifier, we see that the calculated output of AOS does not check. 
Working backwards, we check the two inputs to this amplifier. One comes from A07, 
which does check, (the calculated output is + O.S units in both cases) and the other 
comes from reference through P04. Thus the source of disagreement has been narrowed 
down to this pot. Using the given value of x3 = S/12 feet, we find that the pot­
setting should be 0.2083, not 0.1083, and the arithmetic error is detected. After 
this error is corrected on the pot-sheet, and the sign error on the x2 - xl term is 
also corrected, the derivative D06; as calculated on the diagram, becomes: 

D06 =+ {10 (-0.64) + 10(0.03) - 10(0.0417)} = - 6.S17 units/sec. 

which agrees with the value calculated from the original equations. The program 
check is now complete. Note that the entire program check can be carried out off­
line (i.e. without using the computer at all). 

3. Circuit Check 

When the program check is complete, the programmer has a list of amplifier 
outputs and integrator derivatives that can be used for the circuit check. This check 
is made on the computer by establishing the appropriate initial conditions, measuring 
all amplifier outputs, and comparing the measured values to the previously calculated 
values. Any disagreement larger than the effect of component tolerances indicates 
a patching error or a component malfunction. 

The isolation of the source of error follows the same procedure used in 
the program check. If the output of a component is wrong and the inputs are correct, 
the error is isolated in that component. The trouble is quickly narrowed down to a 
patching error, a blown fuse, or a faulty component. When the faulty component is 
replaced or the patching error corrected, the calculated and measured values should 
agree. 
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Although the measurement of amplifier outputs is straightforward, the measure­
ment of integrator derivatives may require a temporary patching change. Since the 
derivative of an integrator output is minus the sum of the inputs, it may be read by 
momentarily disconnecting the network of input resistors from the integrator, and 
connecting them to the summing junction of a spare summer. This summer, which is re­
ferred to as the check amplifier, will then read the derivative directly. Large 
machines generally have a built~in check amplifier, so that no re-patching is necessary 
--the operator merely depresses a series of buttons marked D02, and the derivative 
of amplifier 02 can then be read on the DVM. 

The test signals must, of course, be established at the integrator outputs 
by means of the initial condition input. If these test values are different from the 
actual I.C. 's used in the problem, they must be removed and the actual I.C. 's esta­
blished before the problem is run. In many cases, the actual problem I.C. is zero, 
so that the only change required is to remove the I.C. leads on the integrators when 
the static check is complete. 

Some computers have an output on the patch panel known as test reference 
to avoid the need for this patching change. The test reference terminals are ener­
gized with ± reference voltage only in the static test mode. In all other respects, 
the static test mode is equivalent to the I.C. mode. 

4. Summary of Steps 

1. Assume arbitrary values for all variables appearing at integrator out­
puts •. For each assumed value of a problem variable (e.g. x2 = + 35 
feet/sec.) there is.a corresponding value of the scaled computer vari­
able (e.g., -*2/50 = - 0.7 units). 

2. Using the circuit diagram, the numerical values on the pot-sheet, and 
the arbitrary I.C. 's from st~p 1, calculate ~ the diagram the output 
of every amplifier and the derivative of every integrator output. 

3. Using the algebraic expressions for the amplifier outputs, as given in 
the amplifier sheet, the arbitrary I.C. 's for the problem variables 
from step 1, and the original equations, calculate every amplifier 
output and integrator derivative a second time, and enter these calcu­
lated values on the amplifier sheet. 

4. Compare the calculated values on the circuit diagram (from step 2) 
with these on the amplifier sheet (from step 3). Any disagreement in 
calculated values indicates a programming error. Isolate the sources 
of error by working backwards through the circuit. Af ter the pro­
gramming errors are detected and corrected, the calculated values 
should agree. 

5. Patch the problem and put it on the computer. Establish the appropriate 
static test I.C. 's on the integrators, measure the outputs and deriva­
tives, and compare them with the calculated values. If discrepancies 
occur, a patching error or component malfunction is indicated. Such 
sources of error can be located by working backward thtuugh the circuit, 
as in step 4. 
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6. After all patching errors are corrected and faulty components replaced, 
the measured and calculated values should agree (allowing for norm~l 
component tolerances). The static check is now complete. Before 
running the problem, restore all I.C. IS and parameters to the proper 
values for the first run. (This task is made somewhat easier if the 
computer has a static test mode). 
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CHAPTER IVo 

ANALYSIS OF LINEAR AND NON-LINEAR SYSTEMS 

A. Introduction 

The most common type of problem generally solved on analog computers is one 
involving sets of ordinary differential equations. This chapter surveys dif­
ferential equations in general, with major emphasis on the most easily solved 
cases (linear, constant co-efficient, unforced equations). The objective is 
not to develop facility in analytical solution of differential equations since, 
for most of the interesting and useful equations that arise in practice, such 
methods are either impractical or impossible. Rather, the objective is to 
draw attention to the mathematical and physical concepts (time constants, 
natural frequencies, resonance) that arise from a study of linear systems, 
and to emphasize the relation between the form of an equation and its solution. 

Nonlinear equations are discussed, and two examples are given, chiefly to 
point out the differences in behavior as compared with linear equations. 

The chapter concludes with some general remarks that are often useful in esti­
mating maximum values for scaling purposes. 

B. Linear, Constant-Coefficient Eguations 

A differential equation is linear if it has the form 

n-l 
+ d x dx + = all + ••• + a l a x n- n- dt 0 

dt 
f(t) (1) 

where the co-efficients, a. (0 ~ i ~ n), are either constants, or known func­
tions of the independent v~riable, t. The equation is called a constant co­
efficient eguation if all the co-efficients are constant; otherwise, it is a 
variable coefficient equation. 

It is customary to refer to the function, f(t), on the right-hand side as a 
forcing function or input, and to the unknown, x(t), (the solution of the equa­
tion), as the response or output. An examination of the most common applica­
tions, as cited below, will make the reason for this terminology clear. 

1. Physical Examples 

In a subsequent section of this chapter, the following first-and second-
order linear differential equations with constant coefficients will be solved: 

ax + bx = f(t) (2) 
and 

ax + bx + cx f(t) (3) 

-135-



Both equations apply to a variety of systems. For example, equation (2) 
may represent any of the following: 

a) A thermal system - suppose a small mass of hot material is quenched sud­
denly in a large bath of fluid whose temperature is f(t), which need not be 
constant. Then, the rate of heat loss of the quenched mass is approximately 
proportional to the difference between its temperature and that of the fluid. 
A heat balance equation yields 

k dx = f(t) - x(t) 
dt 

(4) 

where x(t) is the time-varying temperature of the quenched substance and the 
constant, k, depends on the thermal conductivities and specific heats of the 
materials. This is equation (2) with a = k and b = 1. Clearly, f(t) is, 
physically speaking, an input since we may pick the quenching temperature 
arbitrarily. On the other hand, the solution x(t) is an output or result 
due to the input, f(t). 

b) The concentration, C(t), of a chemical compound in a reactor--this may be 
described (if the reaction is a sufficiently simple one) by the equation 

dC 
dt -kC + f(t) (5) 

which says that the concentration, C(t), decreases at a rate proportional to 
the remaining concentration (as C reacts to form another substance), but that 
new amounts of the material are being fed into the reactor at a rate f(t) 
which may represent the rate of formation of C by some other reaction(s), or 
the rate at which the component is piped in from outside. In any case, this 
is equation (2) with a = 1 and b = k. 

c) The radioactive decay of radium into lead and other products. 

d) The concentration, C, in a stirred tank-- in this case, the component is 
not necessarily reacting but is simply being pumped in and out. A material 
balance yields 

v . d Cout 
dt (6) 

where CIN is the inlet concentration and COUT is the outlet concentration 

(which is the same as the average tank concentration, if the tank is well­
stirred). This, again, is equation (2) where we may take a = V, b = q, and 
f(t) ; qC

IN 
or, more conveniently, a = V/q, b = 1 and f(t) = C

IN
• The inter­

pretation of the variables as input and output is clear. ' 

e) The output voltage of the R-C filter (as shown in Figure IV-l)-- here, the 
equation is 

RC • dVout = Vin - Vout 
dt 
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which is equation (2) again. 

r----------------~ 

c 

'- -----------------_. 
Figure IV-1. An R-C filter, showing input and output voltages. 

f) Population growth--here, x is the population of an area, a = 1, b = the 
relative annual excess of births over deaths, and f(t) represents input via 
immigration (or emigration when f(t) < 0.) 

g) Compound interest in a savings account-- here a = 1, b = the interest 
rate, f(t) represents the deposits or withdrawals, and x(t) is the amount of 
money in the account at time, t. 

Typical examples of equation (3) are the following: 

h) An R-L-C Series Circuit 

r---------------------I 
I I 

I I 
I C I 
I I 
, I Vout 
I I 
I I 
I I 
I I 
I L ______________________ ~ 

Figure IV-2 

The output voltage is described by the equation 

LC + RC 
d V out 

at + v = V. out ~n 

which follows from Kirchhoff's Voltage Law. 

i) 4 spring-mass-dashpot system 
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Summing the forces on the mass and applying Newton's second law: 

m x -kx - Dx + f(t) (9) 

where x is the displacement of the mass, x and x are, of course, its velocity 
and acceleration, k, m, and D are the spring stiffness, mass and damping coef­
ficient, and f(t) is the externally applied force. This can be re-written in 
standard form: 

+ D dx 
dt + kx f(t) 

and is, thus, an example of equation (3). 

All these examples indicate the reason for referring to f(t) as the input 

(10) 

or forcing function, and x(t) as the output or response. If f(t) = 0, the 
system is called unforced (sometimes the term homogeneous is used). The 
unforced system represents the decay of a chemical substance that is not being 
replenished, the discharging of a capacitor, the accumulation of capital in 
an account in which no withdrawals or deposits are being made, or the transient 
oscillations of a spring-mass system. 

2. General Properties of Linear Systems 

In solving these equations analytically, two general principles which apply 
to any linear differential equation of any order are used. These are the 
principles of Buperposition and the principle of proportionality. These 
principles take slightly different forms in the forced and unforced cases: 

unforced case (Equation 1, with f(t) = 0). 

Superposition Principle: If xl (t) and x2 (t) are solutions of equation 
U) with f(t) =C),then so is xl(t) + x2(t). In other words, the sum of two 
solutions is itself a solution. 

Proportionality Principle: If x(t) is a solution of equation 1 with 
f(t) 0, then so is kx(t), where k is any constant. 

forced case (Equation 1, with f(t) ~ 0, but with zero initial conditions). 

Superposition: If the input fl(t) produces the output x](t), and the 
input f 2(t) produces x2(t), then the input fl (t)+f

2
(t) will produce the output 

xl(t) + x2(t). 

Proportionality: If the input f(t) produces the output x(t), then 
kf(t) will produce kx(t). 

The proofs, in every case, follow by differentiation and substitution. These 
two properties are characteristic of linear systems; in fact, it can be proved 
that any first-or second-order differential equation that has these properties 
must be linear; that is, it must have the form of equations (1) or (2). 
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Both these principles can be given physical interpretation. The principle 
of superposition means that it makes sense to talk about cause and effect in 
a linear·system. If a linear system is subject to many inputs and initial 
conditions, then its output can be broken down into parts (effects) corres­
ponding to the various causes. When several causes operate simultaneously, 
the total effect is the sum of the individual effects. 

The principle of proportionality means that if the magnitude of the forcing 
function to a linear system is doubled the magnitude of the response will also 
be doubled. 

3. Analytical Solution 

. a. Unforced Systems (f(t) = 0) -- the key to tackling the unforced 
case lies in the principles of superposition and linearity. 

Together, they imply that if solutions x1 (t), x2(t), ••. xn(tY can be found, 
then the sum 

n 

L A.x. (t) 1. 1. (11) 

i=l 

is also a solution for any constants, Al , A2 ... An • If ~ initial conditions 
must be rna tched, .. there should be n constants, Ai' A

2
, ••• A , to meet these 

conditions. The problem is, ther;fore, one of find1.ng engugh different solu­
tions so that, by combining them, a solution to match an arbitrary set of 
~can be found. 

i. 
dx 

First-order equation, adt + bx = O. 

This equation is so --simple that it can be solved easily by 
separation of variables. 

dx 
dt 

b 
a 

x 

Separating variables: 

dx 
x 

Integrating: 

b dt 
a 

log x = -(b/a)t + C 

x = e C • e-(b/a)t = Ke-(b/a)t 

(12) 

(13) 

(14) 

(15) 

This equation contains one arbitrary constant, K,derived from the constant, 
c, which we obtained as a constant of integration. This constant is just 
enough to permit matching of one arbitrary initial condition. Given xO' K 
can be determined by setting -t---- 0; since eO = 1: 
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Therefore 

x 
o 

x(t) x e 
o 

K (16) 

-(b/a)t 
(17) 

The graph of the solution is a decaying exponential (Figure IV-4) if b and a 
have the same sign, and an increasing exponential (Figure IV-5) if they have 
different signs. If b = 0, .x is a constant. 

x 

(b/a»O 

--+----------t 

Figur~ IV-4 

Decaying Exponential 

x 
(b/o)<O 

- ...... ---------4t 

Figure IV-5 

Increasing Exponential 

Both the decaying and the increasing exponential occur in practice. Stirred 
tanks, capacitors and radioactive decay follow the decaying exponential curve, 
while compound interest, population growth and supercritical nuclear reactors 
follow the expanding exponential. 

The behavior of this unforced system is described completely by specifying 
the initial condition and the time constant (alb) of exponential growth or 
decay. The reader should be able to verify, directly from equation 2, that 
alb must, in fact, have the dimensions of time. This time constant, or its 
reciprocal bla which has the units of (time)-l, is recognized as an important 
concept in many fields of study and has been given a bewildering variety of 
names which tend to obscure the basic similarity of the systems involved. 
While the term time constant seems to have won the day in electronics and 
in applied mathematics, a chemical engineer is likely to refer to a rate 
constant if he is thinking about a reaction and a holdup time if he is thinking 
about mixing in a tank. A nuclear physicist talks about the half-life of 
radium (which is proportional to the time constant), while a banker refers to 
a 5%/year interest rate instead of a 20-year time-constant. Again, a demo­
grapher, instead of referring to a 50-year time constant for population growth, 
speaks of a birth rate (more precisely, birth rate minus death rate) of 20-
per-year-per-thousand population. 

ii. Second-order equation, ax + bx + cx = 0 

This equation does not appear easy to solve by separation of variables. How­
ever, the solution to the first-order system turned out to be an exponential 
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so maybe the second-order system will -behave similarly. 
see whether it works. Clearly, the derivatives will be 

X k ~kt 

Substituting into the original equatiGn, we obtain 

k
2 kt kt kt 

a e + b k e + c e = 0 

Factoring out the exponential gives us 

2 kt 
(ak + h k + c) e = 0 

and canceling, we obtain 

2 
ak + b k + c o 

Let us try 
kt 

and x e 
given by 

(18) 

(19) 

(20) 

(21) 

(22) 

This is the so-called characteristic equation corresponding to the original 
differential equation. The assumed solution, ekt , will work if (and only if) 
k is a root of this equation. Since this is a quadratic equation, the two roots 
are given by the quadratic formula: 

kIt kit 
Thus, x1(t) = e is a solution and so is xZ(t) = e By using the super-
position and proportionality principles, we concluae that x(t) = A

1
x

1
(t)+A

Z
x

2
(t) 

is also a solution for any values of the constants, Al and A
2

• Th~s gives enough 
constants to match an arbitrary set of initial condit~ons (d~splacement and 
velocity), and provides. the general solution. 

2 The graph of the solution takes different forms depending on whether (b -4ac) is 
greater than, less than, or equal to zero. 

2 
Case I. b > 4ac. There are two real and distinct roots. The solution is the 
sum of two real exponentials. If both roots are negative, the system is stable 
and the graph looks 'like Figure IV-6a or Figure IV-7a, depending on the initial 
conditions. If either or both yoots are posi~ive, the graph looks like Figure 
IV-6b or IV-7b. 
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x x 

--~----------~----------t ---+--------=-------------at 

Figure IV-6a Figure IV- 7a 

x x 

--~-----------------------.t ---+--------------------~t 

Figure IV-6b Figure IV-7b 

Case I. b
2> 4ac Exponential Solutions 

Case II. b
2 < 4ac. In this case, the roots are complex conjugates and they can 

De rewrl.tten for convenience as cr + jWand 0" - jw.where 0" =-b/2a and 

(23) 

The general solution is still 

(24) 

but now, since the solution is written in terms of complex numbers, it requires 
some interpretation; in physical situations, x(t) is generally a real variable. 

Complex exponentials actually are just a shorchand notation for sinewaves , and 
che general solution can be written in the form: 

Ae
crt

sin(wt+0) (25) 

where the amplitude, A, and the phase angle, 0, are complicated functions of Al 
and A. The actual proof of this--the transition from complex exponentials to 
real ~amped sinewaves--takes up about l~ pages of algebraic computation and is 
omitted. In the usual case, a, band c are all gositive and the solution is a 
damped sinewave (note that 0" = -b/2a, so that ecr = e-(b/2a)t). Figures IV-8a and 
IV-8b show the usual response (0" < 0), and Figures IV-9a and IV-9b show what 
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happens if cr > O. This last case (instability) does not occur in a simple 
spring-mass-dashpot system or an R-L-C filter but, as every control engineer 
knows, it can happen in a poorly designed servo system. 

x 

x 

0"<0 
lei 

Figure IV-Ba 

Figure IV-9a 

Case II. b
2 < 4ac) Solutions 

x 

Figure IV-Bb 
x 

~~~~--~--~-----+--------t 

Figure IV-9b 

2 Case III b = 4ac. In this case, there is only one root and it is real 
~~ -672a). Clearly x = ekt is a solution but, unless two different solutions 
can be found, only one of the two arbitrary initial conditions can be matched. 

It turns out that, in this case, x = tekt is a solution also which can be verified 
by differentiation and substitution. This saves the day, since x = Alekt+A2tekt 
is a solution, and the constants Al and A2 can be picked to match two given IC's. 
The solution can be written in factored form as x(t) = (Al+A2t)ekt and, thus, 
represents a linear term times an exponentialo The solution does not oscillate. 

The behavior of the solutions depends upon the magnitude of the damping co-effici­
ent, b. If b is large, the system will not oscillate; if b is small, it will. If 
b is just large enough to prevent oscillations, the system is said to be critically 
damped? if b is larger than this value, the system is overdamped; if b is smaller 
than this value, the system is underdamped. The various cases are summarized in 
Table IV-I. 

Physical Interpretation 

From Table IV-l,we see that a necessary and sufficient condition for the system 
to oscillate is b2< 4ac. For the R-L-C -filter (Figure IV-2), this condition re-
duces to R2 < 4L/c. For the spring-mass-dashpot system (Figure IV-3), the condition 
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I .... 
t • 

Case 

2 
b > 4ac 
Overdamped 

2 b ;: 4ac 
Critically 
Damped 

2 
b <4ac 
Underdampeq 

b = 0 
Undamped 

I 

Formula for Solution 

x(t)=(Al +A2t)e kt 

at 
x(t)=A e s~n(wt+0) 

x(t)=A sin (Wt + _) 

Arbitrary Constants 
(depending on IC's) 

A1,A2 

A. ~ 

System Constants 
(depending on a, 
b, and c) 

k 

a (JJ , 

w 

Table IV-l Summary of Solution Behavior 'with Various Damping Coefficients 

Oscillation? 

No 

No 

Yes 

Yes 



is D2 < 4km. These findings confirm the experimental results that a husky 
shock aosorber or a large resistor in a mechanical or electrical system will 
damp out oscillations. For example, the shock absorbers on a car may be 
tested by jumping on the bumper and then off ag2in. If the bumper returns to 
rest with no overshoot or one overshoot, then D ~ 4km and the shock absor­
bers aZe all right. If the bumper oscillates several times in settling down, 
then D <4kmand it is time for new shock absorbers. 

The underdamped case is by far the most common and deserves a little extra 
attention. The roots of the characteristic equation are the complex conjugate 

pair a +j to and a- jw, where 0= 
b 
2a 

Since the solution 

is x A eat sin (,J)t+0) , there will be a decaying exponential (Figure IV-8a 
or Figure IV-3b)only if a < O. In this case, the system is said to be stable~ 
In general, a linear system is stable if (and only if) all the roots of its 
characteristic equation have negative real parts. 

Looking at the formula for a in terms of a, b, and c, it is found that a=-b/2a 
and, hence, if a and b are both positive (or, for that matter, both negative), 
the system will be stable. In the examples cited above (the spring-mass­
dashpot system and the R-L-C filter), the coefficients a, band c represent 
physical parameters such as mass, capacitance, etc. which are always positive, 
and, hence, these systems are always stable. 

Figure IV-lO gives a plot of the roots 0 + jw. Both the real and imaginary 
parts of these roots have the units of (time)-l. The real part, a,is the time 
constant of the exponential factor). The imaginary part, ~is the radian 
frequency of the sinusoidal oscillation. 

ROOT CT+jW 

T: 
W 

IMAGINARY 
AXIS 

REAL -z.....;. ________ ~--_-____ AXIS 

~ u'--------~~----
I 
I 
I 
I 
I 

ROOT U-jW 

Figure IV-lO. Complex Plot of the 
Roots of the Characteristic Equation. 
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It is interesting to calculate the length of the complex vectors representing 
the roots in Figure IV .. IQ The length is given by 

(26) 

Note that this is independent of the damping co-efficient, b~ The effect of 
changing b is to rotate these vectors without changing their length. If b=O, 
then the vectors are vertical (pure imaginary numbers) and their length is 
the radian frequency of the undamped oscillation. This is called the undamped 
natural frequency, W , of the system and can be calculated very easily 

n 

W =~ n a (27) 

As the damping coeffi-cient, b, is increased, the complex vectors rotate down­
ward, maintaining the same length, W. The vertical component, w, is the actual 
frequency of the damped oscillation,nand the horizontal component is the recip­
rocal of the exponential time-constant. 

The original equation can be divided through by ~ to give 

x+.£x+.£x=O 
a a 

and then re-written in terms of the undamped natural frequency 

W ...:J~ 
n -V; 

and the dimensionless damping factor 

s = actual damping 
critical damping 

The re-written equation becomes 

·x +2~W x +w 2 x=O n n 

= 
a 

W n 

(28) 

(29) 

(30) 

(31) 

which is a common way of writing an unforced second-order system since it 
displays the parameters (~ and w) which describe the actual response. 

iii. Higher Order Systems 

An nth-order, linear, unforced equation can be attacked by the same method 
used for the second-order system. The general, linear, unforced, nth-order 
equation is 

n n-1 
d x + d x a -- an_1 --n:T + ••• + a1 n dtn dt 

dx + a x 
dt 0 

o (32) 

and a solution of the form x kt 
e is found to satisfy the equation only if 

a kn + a kn - l + 
n n-l a (33) 
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This is the characteristic equation corresponding to the original differential 
equation. Since it is an nth-order polynomial, it will generally have n dis­
tinct roots, although multiple roots occasionally will occur. If the roots are 
all distinct, then there are exactly ~ of them: k l , k

2
, ••• k

n
. 

kIt k2t 
Since e ,e ,etc. are all solutions. The following is also a solution: 

x(t) 
n k.t 

= ~ A.e ~ 
1. 

i=l 

n 
+ ~A.ecr.tsin(w.t + 0.) 

.11. 1. 1. 1. 1.= 
(34) 

where the k. are the real roots of the characteristic equation, and the 0i and 
w. are, res~ectively, the real and imaginary parts of the complex roots. Each 
of the terms in this expression is called a normal mode of the system. Each 
normal mode is either an exponential (growing or decaying) or a damped (or 
undamped) sinewave. 

A normal mode represents the typical behavior of a first-ord~r or second-order 
system, and, thus, a higher order system can be thought of as a combinat ion of 
first-and-second-order systems. 

While a first-order system is characterized by a time-constant and a second-
order system by a natural frequency and damping coefficient, a higher-order 
system has several time-constants, damping co-efficients and natural frequencies. 

We can "excite" any normal mode independently of the others by appropriate 
choice of initial conditions. That is, we may choose the IC's so that all but 
one of the A. 's are zero. The result will be a"pure" normal mode. However, 
in most actu~l physical situations, all the system's modes will be excited. To 
visualize the types of responses that result, one should think a little about 
what happens when several exponentials and damped sinewaves are added. Figure IV-
11 shows a typical combination of an exponential and a damped sinewave such as 

_ might be expected from a third-order system.~ure IV-12a shows the sum of two 
sinewaves whose amplitudes and frequencies differ considerably. The graph 
presents a clear picture of "one damped sinewave riding on top of another". Figure 

IV - l2b illustrates the sum of two sinewaves of slightly different ampli­
tude and frequency. If the frequencies are only slightly different, the two 
sinewaves will drift out of phase, then into phase, then back out of phase 
again. When they are out of phase, the sum will be near zero since the ampli­
tudes are approximately the same. As they drift into phase, the sum becomes 
larger eventually reaching a maximum when the two are in phase, and then de­
clining again. The resultant swells in amplitude are known as beats and are 
familiar to anyone who has listened to two musical instruments that are slightly 
out of tune with each other playing simultaneously. 

X X 

-----r----------~~~~------__ t 
Figure IV-II 
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Figure IV-12b 
Sum of two slightly different sinusoids 

b. Forced Systems (f(t) ~ 0) ••• This section discusses the equation with a 
forcing function 

dnx n-l dx + a 
d x + ••• + a1 + f(t) a -- n-1 ---n:T dt a x (35) 

n dtn 
dt 0 

i. Relation between Forced and Unforced S~stems 

One of the first things to be learned about solving such forced-system equations 
is that it isa very good idea to be on familiar terms with the corresponding ~­
forced equation,for the two are very closely related. 

For example, suppose the unforced equation has already been solved completely, 
with all the time-constants and natural frequencies characterizing the system 
found and, hence, all solutions obtained. Then, if just ~ solution for the 
forced equation can be found, then all solutions for a given forcing function 
can be found. 

To see this, suppose there are two functions, x1(t) and x2(t), which satisfy 
the same linear, forced equation with the same forcing function, f(t). This 
means 

and 

Subtracting, we discover 

dn ( x
1
-x

2
) 

a n dtn 

dn - l xl 
n-1 dt 

that 

dX1 
+ + a + ao xl = f(t) ••• 1 dt 

+ •.• 

n-1 d(xl -x2) d (xl -x2) 
+ a + ••• + a1 n-l dt n-1 dt 

(36) 

(37) 

(38) 

+ a (x -x ) = 012 

In other words, the difference between two solutions of the forced eguation 
satisfie~; tlie unforced eguation. 
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This general principle means that the general solution of the forced system 
can be obtained by finding just one solution (usually called a particular 
integral) and adding to it the general solution of the unforced system (usu­
ally called the complementary function) which we already know how to obtain. 

The problem of finding the general solution in the forced case, therefore, 
boils down to the problem of finding any solution. Trial-and-error is often 
very successful here, and there are general methods available to use when trial­
and-error fails. 

As a starter, consider several cases where f(t) has a particularly simple form. 

ii. Solution by Step Input 

Suppose f(t) is a step input of height, k. Then we have to find a solution 
to the equation 

dn-lx 
+a 1---1 n- n-dt 

dx 
+ ••• + a l dt + a x o 

k (39) 

One idea immediately suggests itself: a constant value for x. It is not hard 
to see that if x = k/a , then the equation is satisfied. This is a trivial 
solution and, in a giv~n physical situation, it almost certainly will not be 
the solution of interest, but no matter! All solutions can be obtained by 
adding to the constant, k/ao ' the general solution of the unforced equation. 
The result will contain enough arbitrary constants to match initial conditions 
for x and its first n-l derivatives, and thus find the required solution. 

Typical step responses for the first-and second-order systems are given in Figures 
IV-13 and IV-14. Note that overshoot and oscillations occur only in the 
underdamped second-order case. The overshoot, if the system is stable, is never 
more than 100%, and even 

x 

-.f-------------t 

Figure IV-13: Solution to 
the first-order equation 
ax + bx = k 

Figure IV-14: Solution to 
the second-order equation 
ax + bx + cx = k 

this value is only approached in very lightly damped second-order systems. 
(This fact is often useful in estimating maximum values for scaling purposes.) 
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iii. Sinewave Input 

Suppose the input is a sinewave, f(t) = sin wt. Then, both experience and 
intuition (mathematical or physical) will lead most people to expect a sinu­
soidal output. 

Usually, this turns out to be the case. One may try for a sinusoidal solution 
by assuming x(t) = A sin (wt + 0) and then differentiating and substituting to 
find the amplitude, A, and the phase angle, 0, of the output relative to the 
input. With luck, two equations in the two unknowns will result which can 
be solved for A and 0. The algebra gets a bit complicated but it can be 
simplified greatly by regarding the input as the imaginary part of the complex 
exponential, ejwt = cos Wt + j sin wt. For a detailed description of the pro­
cess, see Ref. 1, Chapter 6. For the purposes of this volume, it will suffice 
to observe that a sinusoidal input into a linear, constant co-efficient system 
generally produces a sinewave output, and that the amplitude and phase of the 
output relative to the input can be calculated algebraically. 

There is one case in which the above method for finding a particular integral 
does not produce a pure sinewave. This is the case where the unforced system 
has a normal mode consisting of a pure (i.e. undamped) sinewave with the same 
frequency as the input. In this case, the solution contains terms like (A+Bt) 
(sin wt) indicating oscillations whose amplitude increases without bound. 
In case the normal mode is slightly damped, we have oscillations with a finite, 
but very large amplitude. In either case, the system is said to be in resonance. 

Physically, resonance means that if a system is driven by an input whose fre­
quency is close to a natural frequency of the system (that is, a frequency at 
which the system would tend to oscillate even if unforced), the result will be 
an output of very large amplitude. For example, in pushing a child in a swing, 
large amplitude oscillations are necessary to satisfy the child. To achieve 
these with minimunl effort, the pusher soon learns to time his pushes so that 
each push reinforces the motion of the swing rather than opposing it. This 
means that the ~usher must match the frequency of his pushes to the natural 
frequency of the swing. 

Resonance is also important in structural design. If an airplane happens to 
have lightly-damped normal modes whose frequency is close to the rpm of the 
engines, the resulting vibrations can build up in amplitude until they tear 
the plane apart. It is the responsibility of the designer to see that this 
resonance phenomenon does not happen. The same sort of thing can occur, say, 
when a detachment of infantry march in cadence across a bridge. Often, the 
leader will tell his men to break step and just walk across to prevent this 
sort of catastrophe. 

Resonance is also important in tuning a radio. To get the maximum output for 
a given input, it is desirable to adjust the tuner section of the radio so 
that its natural frequency is as close as possible to the frequency at which 
the station is actually broadcasting. 

iv. Arbitrary Input 

Suppose f(t) is an arbitrary function given by some complicated analytical 

expression or by a graph or table of values. To find one solution (a 
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particular integral), in this case, there exist a number of techniques, some 
of which are listed below. For more details, see Ref. 1. 

1) The convolution integral- This technique gives the solution in 
terms of an LntegraI whLch mayor may not be easy to evaluate. It has the 
advantage of working with tabular or graphical inputs, in which case the inte­
gral must be evaluated by some numerical method (Simpson's Rule, counting 
squares, etc.). 

2) Harmonic analysis-- If the input is periodic 
may be broken down Lnto an infinite sum of sinewaves. 
superposition, each sinewave may be handled separately 
the resultant output. 

but not sinusoidal, it 
Using the principle of 
and then added to obtain 

3) Integrating Factors-- This method works nicely with first-order 
systems, includLng those wLth variable co-efficients. 

4) Undetermined coefficients-- It has already been shown how this 
w~Eks in tackILng the unforced equation by assuming an exponential solution, 
e ,and solving for k. Sometimes it works very well fOr the forced case also. 

5) Variation of parameters -- This method is similar to the method of 
undetermined coettLcLents. It has the advantage of working in the case of 
time-varying coefficients, and the disadvantage of requiring the solution of 
the corresponding unforced case first. 

6) Laplace Transforms-- This method is very handy for functions that 
have Laplace transforms that can be easily managed. See Ref. 1, Chapter 9 
for details. 

7) Infinite series 

8) Guessing-- This is the easiest method to apply, if it works. If it 
does, more complicated techniques are not necessary. 

C. Linear Systems with Time-Varying Coefficients 

Suppose the co-efficients, a , in Equation 1 are not constants but known func­
tions of time. Then, the ex~onentials and sinewaves encountered in the constant­
coefficient case will not always work. Other methods, such as infinite series, 
integral transforms and integrating factors must be used to find particular 
solut;ons. However, it is worth pointing out that the principles of super­
position and proportionality still work. If enough different solutions of the 
unforced equation can be found, they can be multiplied by arbitrary constants 
and added to obtain the general solution. If the unforced system can be solved 
completely and just one solution of the forced equation can be found, then 
the general solution for that forcing function can be obtained by adding the 
complementary function(general solution of the unforced system) to the par­
ticular integral (solution of the forced system), just as was done in the con­
stant-coefficient case. A more detailed discussion of time-varying systems is 
beyond the scope of this volume. 
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D. Non-linear Equations 

Most of this section is concerned with illustrations showing that the most 
desirable properties of linear equations (superposition, proportionality, 
etc.) are not applicable in solving the nonlinear ones. 

As an illustration of what can happen with nonlinear systems, consider the 
pendulum equation 

Q. + ~ Q + .B sin Q = 0 
m L 

Q (0) = 0; Q (0) # 0 (40) 

This equation describes the angular displacement, Q, of the ballistic pendulum in 
Figure IV-IS which is suddenly given an initial velocity (by striking it with 
a hammer or a bullet). In case g is very small (less than about 150 = ~ radian), 
it is usual to replace sin Q by Q, giving the linear equation 

Q o (41) 

which can be solved by the methods outlined above, yielding a damped sinewave 
solution. In case Q is not restricted to small values, the original nonlinear 
equation must be solved. Although the analytical techniques described above 
will not work, an analog computer solution is relatively easy. The results 
given below were obtained in this manner. 

PIVOT ----+ 

I 
I 
I 

INITIAL I" 
VELOCITy--..... -I- - --
-&0 

M 

PENDULUM 
BOB 

Figure IV-IS: A Ballistic Pendulum. 

Summation of the torques about the pivot-point gives the non-linear 
equation. 

Q + ~ g + ~ sin Q 
m L o (42) 

Compare the solution of the nonlinear equation with the solution of the sma1l­
angle linear approximation. Figure IV-16 gives the solution of the linear 
equation for three different values of the initial velocity, and Figure IV-17 
gives the solution of the nonlinear equation for the same three values. 
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G(RADIANS) 

27T 

7T 

= 9 rad /sec 

Go = 8 rad/sec 

.eo = 4 ra d/sec 

-+--k-+--Mt.-f.~~,-"-H~fF---..JI.d:o:::z.j~-----' TIME (SECONDS) 

Figure IV-16: Solution of the Linear Equation .. 
Q + (c/m)Q + (g/L)Q = 0 for Different Initial Velocities 

-9-( RADIANS) 

27T 

7T 

-~-'4--\'~~~~4-liJ~~~~c..;-----.. TIME (SECONDS) 

Figure IV-17: Solution of the Non-linear Equation . 
Q + (c/rn)Q + (g/L)sin g = 0 

for Different Initial Velocities 
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Inspection of the graphs illustrates very clearly the proportionality principle. 
In the case of the linear circuit, changing the initial velocity simply changes 
the entire graph in proportion. The curve corresponding to Q = 8 rad/sec is 
just twice as high as the curve corresponding to Qo = 4 rad/s~c. The curves in 
Figure IV-16 all cross zero at the same time since they differ only by a con­
stant factor. 

For Figure IV-17, corresponding to the nonlinear equation, the results are 
quite different. If ~o = 4 rad/sec, then the system produces a small-angle 
oscillation, and the maximum value of G is about 1 radian. Since, in this 
region, sin G is fairly closely approximated by G, the solution should look 
very much like the solution to the linear system. An IC twice as large pro­
duces an oscillation about twice as large, but even here the differences are 
noticeable. The curve with the larger IC is noticeably "flatter" near its 
first peak as G approaches n radians. Note, also, that the zero-crossings 
do not coincide as they would if the second curve were simply twice the first • 

. 
With Go = 9 radians per second, the differences in the nature of the solution 
become even more striking. Physically, it is obvious what has happened. The 
pendulum has been hit so hard that it has gone over the top and will not re-

. 0 
turn. The system settles down to a new value of G = 2n (~.e. 360 ). 

The critical value of the initial velocity--the velocity that is just suffi­
cient to put it over the top--is about 8.50 radians per second. Figure IV-18 
shows the results of an IC of 8.49 and an IC of 8.51 radians/sec. It is clear 
that the solution of the nonlinear equation is much more sensitive to small 
changes in the initial condition. Since the solution of a linear differential 
equation depends linearly on the IC's, this sort of thing can not happen in 
the linear case. 

9 9= 8.50 RAD/Sec 

7T eo= 8.49 RAO/Sec 

Figure IV-18. 
Solution of Non-Linear Equation (40) for Critical Initial Velocities 

Clearly, the small-angle approximation is not valid for large initial condi­
tions. As another example of a nonlinear system which does not obey the laws 
that make linear systems so tractable, compare the two equations: 
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- kC (linear) (43) 

dC 
dt - kC2 (nonlinear) (44) 

Either of these equations may describe the depletion of a component, C, in a 
reactor. Which equation applies in a given circumstance depends (among other 
things) upon the particular substance reacting. 

Both equations are simple enough that they may be solved analytically 
(by separating variables). Despite this fact, the nonlinear equation is not 
nearly so "nice" to handle analytically since the principles of superposition 
and proportionality do not apply. 

Compare the steps taken to solve both equations. Although the steps are 
very similar, the results are quite different. 

Linear Case Nonlinear Case 

dC 
dt 

dC 
C 

kC 

- kdt 

log C = -kt+K 

Original Equation 

Separating Variables 

'Integrating 

dC -kdt 
C

2 

1 kt + K -C -

C 
, -kt ' k 

K e ,where K =e Solving for C C 
1 

kt+K' , where K' =-K 

The result is an exponential in one case, and an algebraic solution in the 
other. More significantly, the dependence upon the initial conditions is 
quite different in the two cases. Since the initial condition determines 
the constant, K', in each case, the fact that C = Co when t = 0 can be used 
to obtain 

C C e -kt in the linear and (45) 
0 

case, 

C 
Co 

in the nonlinear case. (46) 
1 + C kt 

0 

Note that doubling the initial concentration simply doubles the entire solu­
tion in the linear case. In other words, if the system is started with twice 
as much of the component initially, twice as much will be obtained at any 
later time--the entire behavior of the system is simply scaled up be a factor 
of two. Examination of the above formulas shows that this is not true 
for the nonlinear case. This result is quite important to someone who is 
trying to extrapolate the results of a bench-scale or pilot-plant study to 
predict the overall behavior of a full-size commercial reactor. 
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As another example, suppose component C is fed into the reactor at a rate, f(t). 
The following forced equations ate then obtained: 

and 

dc 
dt 

dc 
dt 

- kC + f(t) 

- kC
2 + f(t) 

(linear case) (47) 

(nonlinear case) (48) 

In the linear case, the solution to the unforced system tells us a good deal 
about the forced system as well, while in the nonlinear case this is not so. 
Suppose, for example, a constant input rate, K, is assumed,. Then a particular 
integral (which represents the steady-state behavior) may be found in both the 
linear and nonlinear cases by setting dC = 0 The results are 

dt • 

for the linear case (49) 

C=~ 
k 

for the nonlinear case (50) 

The steady-state concentration depends linearly on the input in the linear 
case but not in the nonlinear case. Furthermore, the "complementary func­
tion" (the general solution of the unforced equation) may be added to this 
particular integral and gives in the linear case 

C - K +K' -kt (51) - k e 

which is the general solution. Attempting this for the nonlinear equation, 
the result is 

c ="Vf' + 1 (52) 
k kt + k I 

which does not satisfy the forced equation. Although the nonlinear unforced 
system has been solved completely, this does no good at all when the same 
system is tackled in the presence of a forcing function. It must be started 
from scratch. 

It has been shown that most of the "nice" properties of linear systems go out 
the window when we consider nonlinear systems. Since most physical systems 
are, at least, somewhat nonlinear and many are highly nonlinear, a great many 
of the equations that an engineer or scientist would write down are difficult 
or impossible to solve analytically. (In fact, even the solution of a linear 
constant-coefficient equation with a simple forcing function can be quite 
tedious. The amount of algebraic manipulation required to find the roots of 
the characteristic polynomial, to fit the initial conditions, etc. for a 
fourth-order system is enough to make most men turn to a computer for relief, 
even though this is, theoretically, a "solvable" case.) 
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Many of the above difficulties are eliminated when a computer is brought in 
to do the work. However, the computer-user must expect occasional extreme 
sensitivity of the solution to small changes in parameters, initial conditions 
or inputs, such as the radical change in the solution caused by a very small 
change in initial velocity in the pendulum problem (Figure IV-18). Such extremely 
"sensitive" solutions are sometimes taken as an indication of poor programming 
and scaling, or faulty computer components. Occasionally, this is the case. 
However, if the programming is carefully done, and both the program and the 
operation of the computer components are thoroughly checked, such sensitivity 
should be taken as evidence of a "critical" area in the original problem. 

E. Estimating Maximum Values for Scaling 

The general principles given in this chapter provide a very useful 'rule of 
thumb' for estimating maximum values. As pointed out in Chapter III, one of 
the problems encountered is that of estimating maximum values for higher-
order derivatives of a variable, assuming that the maximum value of the variable 
itself is known. This is made very easy by examining the time-constants and 
natural frequencies of the system. It is not even necessary to go through all 
the algebra required to actually solve the equation. Furthermore, the method 
can be applied to nonlinear systems as well as linear ones, since many non­
linear systems can be linearized to obtain "ball park" estimates of maximum 
values. 

Begin by considering the two types of functions which are characteristic 
solutions of linear systems, namely exponentials and damped sinewaves. The 
relationship between the maximum value of the variable, and the maximum values 
of its derivatives is easy to calculate for these functions: 

For the 

etc. 

If the 

etc. 

exponential function 

A 
kt 

x e 

x k A 
kt e 

x= k2A 
kt e 

system is stable (k < 0) 

x (MAX) A 

x (MAX) kA 

x (MAX) k
2
A 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

In other words, the maximum values of the variable and its derivatives form a 
geometric progression; each estimated maximum value for a derivative can be 
obtained by multiplying the maximum value of the lower-order derivative by k, 
the root of the characteristic equation. 
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For the damped sinewave 

x A at . ( e S1n wt + 0) (59) 

X A e • w cos(Wt [ at + 0) + aeatsin(wt + 0)J (60) 

x at [ Ae W cos (Wt+0) + asin(wt+ 0)J (61) 

Since the sum of a sinewave and a cosine wave of the same frequency is another 

sinewave, the term in parentheses can be rewritten as\Ja
2 

+ w
2 

sin (wt+0'), 
where 0' is a phase angle depending on a and w. Hence 

(62) 

Since the maximum of the exponential factor, eat, is unity (assuming, as is 
usually the case, that the system is stable so that a < 0), and that the 
maximum of the sin(wt + 0' term is also unity, a reasonable estimate for the 
maximum is x(MAX) = A. The actual maximum will be slightly less than this if 
the sine term and the exponential terms do not assume their maximum values 
simultaneously. Whether this happens or not depends on the phase angle, 0', 
which in turn depends upon the initial conditions. However, the estimate 
x(MAX) = A is seldom very far from the true maximum, and is generally close 
enough for scaling purposes. 

Continuing this reasoning, 

x(MAX) = \/a2 + w 2 (A)= w A 
n 

(63) 

Thus, for damped sinewaves, the estimated maximum values also are in geometric 
progression. The maximum value for each higher-order derivative then can be 
found by multiplying the estimate for the preceding derivative by the natural 
frequency of the system which is the magnitude or absolute value of the complex 
conjugate roots of the characteristic equation. 

Note that it is easy to calculate the undamped natural frequency without actually 
solving the characteristic equation; the undamped natural frequency for the 
equation ax + bx + cx = 0 is simply ~ 

The general nth-order system has several time constants and natural frequencies, 
and the relationship between the variable and its derivatives will depend upon 
which normal modes are excited. This, in turn, depends upon the initial con­
ditions. Actuall~ calculating the natural frequencies and/or time constants 
and determining which normal modes are excited is a very tedious job for a 
system of higher than second-order. In fact, it amounts to solving the equation 
analytically. However, since only approximations are of interest here, perhaps 
some easily-calculated "average" natural frequency will suffice. 

It turns out that, for the general nth-order polynomial equation 

a kn n-l 
n + an _l k + ••• + a l k + ao = 0 (64) 
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a good "average" natural frequency to use for scaling purposes is 

(65) 

This is a direct generalization of the formula for the second-order case 

w =w;; 
n 

(66) 

( This formula works quite well when the roots of the characteristic equation 
do not differ too widely in magnitude. (In fact, it is a basic theorem in 
the theory of p£lynomials that the product of all the roots is precisely 
a fa , so t9at w, as defined above, is actually the geometric mean of the 
a8soYute values of all the roots.) 

This seems like a good "average" to use in estimating the maximum magnitudes 
of the various derivatives. 

Hence, to estimate the maximum values of X, X, etc., where x is a solution of 
the equation 

dn x n-l + d x d x 
a all + ... + a l dt + aox 

n dtn n- dtn-
o (67) 

the general rule is, first calculate the "average frequency", iIi = Va la , and 
then estimate the maximum values of the higher derivatives by using tRe ¥ule 

x(MAX) ~ ill x(MAX) 

x(MAX) ~ 0)2 x(MAX) 

etc. 

(68) 

(69) 

This method is quite easy to use and results in approximately equal distri­
bution of gains around the main computing loop. 

For nonlinear systems, a rough idea of the "time constants" and "frequencies" 
involved often may be obtained by a very crude linearization. For example, 
a spring-mass system with a nonlinear spring might be described by an equation 
such as 

o (70) 

Assume x(MAX) is known on physical grounds. Then, if we write the spring 

term as (kl + k2 x
2
)x, we may linearize the spring by substituting (k

1
+k2X(MAX)2) 

for the term in parentheses. This amounts to replacing the cubic sprLng term 
with a straight line, as in Figure IV-19. 
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Figure IV-19 

Spring-mass System Approximation 

It is then possible to calculate a crude "natural frequency," 

w :-J kl +k2 x(MAX)2 

m 
(71) 

and use this to estimate the maximum velocity and, if needed, the accelera­
tion. Though the method is crude, it is fairly easy to use and gives reasonable 
results in most practical cases. 

F. Algebraic Equations 

Certain difficulties arise in the solution of algebraic equations on an analog 
computer which prevent one from programming them in a straightforward manner. 
The nature of these difficulties is described briefly in the following pages. 

Consider a simple set of two simultaneous algebraic equations: 

(72) 

(73) 

One could attempt to solve these equations using a similar approach as for 
differential equations, i.e., solve for the unknowns xl and x2, 

(74) 
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(75 ) 

and develop a computer circuit in a straightforward manner: 

-I 

-I 

Figure IV-20: Direct Circuit for Solution 
of Two Simultaneous Linear Algebraic Equations 

The resulting circuit is a two amplifier loop, and the gain around this loop 
is K = alZa2l/allaZ2-

This is a positive feedback loop and it can be shown that if K ~ 1 the system 
will be divergently unstable_ 

It would appear that if one of the coefficients were negative, adding a third 
amplifier to the loop a condition of negative feedback would result and 
there would not be a stability problem. However, one may find that in this 
case, instead of a divergence one obtains a violent oscillation. This would 
occur if the frequency dependent characteristic of the amplifiers contributes 
sufficient undesired phase shift such that the required condition of negative 
feedback becomes one of positive feedback; if the loop gain is greater than 
one at that frequencY,the system will break into oscillation. 

If one considers each amplifier to have a first-order transfer function 
-K~l+Tph it can be shown (See Ref. 2, pp. 195-6) that the maximum permissable 
loop gain,K,for an odd number of amplifiers is 

TT -n 
K = (cos - ) . n 

where h = number of amplifiers in the loop. 

Thus,for a three amplifier loop,the maximum loop gain is given by 

K TT )-3 
(cos "3 8 
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In practice the figure is somewhat lower than this since the transfer function 
of an amplifier is more complicated than a first-order lag. 

A better approach for solving algebraic equations is to transform the set of 
algebraic equations into a set of differential equations which has,as its 
steady state solution, the solution of the original algebraic equations. 

Considering the above example, the set of differential equations would be 

dX
l 

+ allxl bl - a12x2 Cit (78) 

dX
2 + a 22x2 

b
2 dt a2lxl (79) 

These can be programmed readily on the analog computer and will give the desired 
solution provided all and a 22 are positive coefficients. 

To guarantee a stable solution for larger sets of equations, requires special 
techniques which will adjust the equations so that they will always reach 
steady state. 

It is beyond the aim of this course to describe these techniques in detail; 
if one meets with sets of algebraic equations in programming, one should obtain 
further information from the available literature. 
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CHAPTER V 

TECHNIQUES IN FUNCTION GENERATION 

A. Introduction 

The necessity of introducing implicit and explicit (or analytic) functions 
into a simulation is characteristic of the mechanization of a great many 
practical problems. A variety of methods may be used to introduce these 
functions, such as function generators (diode function generators, curve 
followers, potpadder units, resolvers, etc.); diode and relay circuits; and 
the solution of equations using amplifiers, potentiometers and multipliers. 

The choice of method, therefore, requires careful consideration of several 
factors: 

1) the available equipment 
2) the nature of the function 
3) the accuracy required 
4) the need for flexibility 

The mechanization of implicitly defined functions is restricted to function 
generators, with the exception of selected physical phenomena and mathematical 
constraints. The simulation of dead zones, absolute values, hysteresis, etc. 
is readily accomplished by diode and relay circuits. 

If a function is analytic, it is advantageous frequently to mechanize the alge­
braic, differential or integral equation relating it to its independent variables. 

If one or more parameters of an analytic function are of interest, it is simpler 
to vary potentiometer settings than to set up a new function on a function 
generator per computer run. Accuracy is another consideration, since function 
generators can create errors when they approximate a function by straight line 
segments. 

In this chapte~ the methods of analytic function generation involving power 
series, differential equations and rational fractions and powers will be con­
sidered. In addition, selected diode and relay circuits will be illustrated, 
and methods of minimizing function generator errors will be discussed. Fin­
ally, a portion of this chapter will be devoted to miscellaneous practical 
applications such as continuous resolution, high speed coordinate transforma­
tions, etc. 
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B. Analytic Function Generation 

1. Power Series 

In practice, power series generally arise from numerical analyses of experi­
mental data, or as accurate approximations for analytic functions whose argu­
ment is in the vicinity of zero or varies over a very small range. Power series 
applications may be subdivided into two categories: functionsof computer time, 
t, and functions of variables other than computer time, x. They will be con­
sidered in that order. 

A general representation of a power series in time is the Maclaurin Series 

y 
a t 2 

n 
+ --,- + .•• 

n. 

whose coefficients are actually initial conditions. For example 

(1) 

y(O) = a o (2) 

y(O) 

and in general 

(~)= 
dt t=O 

a 
n 

(3) 

(4) 

Therefore, a power series in time easily can be generated by cascading inte­
grators whose initial conditions are the coefficients of a series approxima­
tion. 

An-I 

An~An-I-An t 
-Ao 

54- Y(t) 

This mechanization is "open loop" since no feedback is required. 

A practical illustration of this technique is the approximation: 

t 3 
y ~ tan(t) = t -~ Y (0) = 0 

whose derivatives are 

• I 2 y = - t y (O) = 1 
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Y= -2t Y (0) 0 (7) 

and 

.y = -2 (8) 

+1 
Y • -y 

':"y=+2 Y 

An alternative approach is to generate the required powers of time and then 
sum them to obtain the desired function. 

-I t 2 

>----y(t) 

This method obviously requires more components for the generation of a sing1p 
function but it proves to be the most efficient method of simulating several 
power series simultaneously. 

If the independent variable of the series is not represented by machine time" 
the generation of its powers will require nonlinear equipment as in the case of 
the approximation, 

3 x 
y = sin x::::':: X - 3!'" (9 ) 

whose maximum error is 1/1000 for x < 1.04. Using a (1/4)2 multiplier, which 
is good for generating ascending powers, a circuit to generate sin x is 

x-~x 

y 

If limited-range, function generation of this type is desired about a fixed 
point, xo ' a perturbation variable substitution of the form, 

Z = x- x 
o 

is required. 
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EXPONENTIAL 

-A 

SINUSOIDAL 

A 

W 

HYPERBOLIC 

A 

Figure V-I 

-A 

0<0 

-8 

-B 

w 

Y =AE -of 

dy -at 
-=-OAE 
dt 

dy 
- +oy=O dt 

y (0) =A 

y =ASir ~t)+ B COsw t) 
y = W L A Cos(w t)+ B Sir(W~ 

y:- W 
2 

[A Sirtut)+ B costut~ 
.. 2 
y + W Y =0 

Y (O) = B; Y (O) = w A 

y = A Sin h ~t)+ B Cos h(wt} 

y = w [ACOShfwt)+BSinh(wt~ 

y = w ~A S int(wt)+ B cost(wt~ 

.. 2 
y-w y=O 
y (0) = B; y(O)=wA 

Selected Function Generation Circuits 
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In this case, sin x becomes 

or 

sin x = sin (Z + x ) 
o sin Z cos Xo + cos Z sin Xo 

sin x = a sin Z + b cos Z 

(11) 

(12) 

where a and b represent cos x and sin x ,respectively. An approximation (1) 
of comparable accuracy for co~ Z (l/lOOofor fz\ <±0.7) is 

Z2 
cos Z = 1--

2 
(13) 

Therefore, a resultant expression for sin x about point Xo (from (9) and (13)) is, 

bZ2 aZ3 
sin x = b + aZ - 2 --6-- (14) 

which can be mechanized by replacing x with Z in the previous circuit. The 
high accuracy of this mechanization can be realized only if the input, Z, does 
not exceed + 0.7. Additional illustrations of series approximations are avail­
able in the-literature (1). 

In general, one can obtain high accuracy approximations to functions by using 
relatively few terms of a power series. This is especially true in the vicinity 
of zero. Therefore, this method should be given careful consideration when 
high accuracy is desired over a limited range. 

2. Differential Equations 

Another method of generating an analytic function is to obtain a differential 
equation whose solution is the desired function. This equation can then be 
mechanized on the computer, with the proper initial conditions, to obtain the 
desired function. 

Typical illustratLons include exponential and sinusoidal functions. 

-at y = A 8 

and 
y = A sin w t + B cos wt 

whose differential equations, which were discussed in Chapter IV, are 

and 

y + ay = ° , y(O) = A 

2 + w Y 0, y(O) = B, y(O) = rnA 

-167-

(15) 

(16) 

(17) 

(18) 



respectively. The mechanization of these eauations and the equation generating 
the hyperbolic functions, Sinh illt and Cosh illt, is shown in Figure V-1. 

If a positive exponential or hyperbolic function is of interest, the fact that 
its mechanization will produce overloads eventually should not affect its 
utilization. One should scale these quantities such that overloads occur 
after results have been obtained from the simulation. 

A more complex illustration is the generation of the probability distribution 
integral 

2 t _t 2 

Y =rnI € dt 
o 

(19) 

whose derivatives are 

y 2 _t2 
= - £:: 
VTf 

(20) 

and _ t 2 

.y -2t ( 
2 £:: ) = Vtt (21) 

Substituting equation (20) into equation (21), a convenient differential equa­
tion is obtained 

y = -2t Y 
whose initial conditions are 

and 

y(O) = 0 

y(O) = .L 
to/TI 

Therefore, the integral function may be obtained from 

-2 
2lViT 

'--_oJ 

-2ty -y 
y 

The mechanization and analysis of functions involving variables other than 
machine time are treated in a similar manner. For example, consider the 
generation of the exponential 

ax 
y = A £:: 

whose first derivative is 

• A ax. y = a £:: x 
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or 
y = a y x (27) 

The solution to this equation is obtained from the circuit 

X-----I 

where -the initial value of the function, y , depends on the initial value of 
o 

the independent variable, xo ' 

(28) 

Note that this circuit requires a derivative input, x, which is typical of 
many function generation applications. 

3. Fractional Powers, Reciprocals, and Logarithmic Functions 

The procedure for generating fractional powers, reciprocals and logarithmic 
functions is similar to that described in the previous section. An attempt 
is made to obtain a differential equation whose solution is the desired function. 

If the desired function is 

y A (t + a)a . 

where a is a fraction, it can be differentiated to obtain 

or 

a-l y = a A(t + a) 

ay 
t + a 

The circuit for generating this function is 

-0 

-1----1 -y (0) 

-y 

a 

Circuits for the generation of logarithms and reciprocals of the form 

y ln A(t + a) 

and A 
y = ---

t + a 
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are similar to the fractional power circuit. Their differential equations are: 

y = A 
(35) t + a 

and, 
2 

y A ---L-
a)2 A (36) 

(t + 

respectively, whose mechanization requires one integrator and one multiplier. 

An alternate circuit for generating fractional powers requiring a servo multi­
plier which accepts a xl / n input is 

x2/n/k 

However, this method is not very efficient if the functional power is a 
parametric variable. 

4. Comments on Analytic Function Generation 

It is impractical to consider additional examples due to space limitations in 
this volume and the complete coverage of this topic in the literature (1). 
The material presented illustrates the simplicity of analytic function genera­
tion and its basic princip~. Convert the desired function into a differential 
equation whose solution is the function of interest and mechanize it on the 
computer. 

C. Resolution and Coordinate Transformation 

If a coordinate transformation involving high frequency variables or repetitive 
operation is required, servo rate and position resolvers cannot be used. How­
ever, solid state sine-cos fixed diode function generators with high frequency 
response can be combined with amplifiers and multipliers, as shown in Figures 
V-2, V-3 and V-4, to perform: 

1. Polar-to-rectangular coordinate transformations 

2. Rectangular-to-polar coordinate transformations 

These circuits have linlited resolution because the range of the function 
generators will, as a rule, be limited to + 900 or + 1800 • 

The multipliers shown in these three figures are quarter square multipliers 
with internally-packaged feedback resistors. In Figure V-3, the angle Q is 
generated in a high speed error loop from an error equation obtained from 
the equality 



y=r Sin e 
x=r Case-

Sin - ..... ----t X 

'"'-___ -I Cos 
X 

y 

x 

Sine-
'">-+---y 

r-------E) 

Case-

Figure V-2 Polar-To-Rectangular Coordinate Transformation 
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x Sin e - y Cos e =0 

x cose +y Sin 9 =r 

Sine 

~ i3 

ji4 
X 

e~~----------------------¢-----< 

STABILITY CIRCUIT-USUALLY A 
CAPACITOR (ABOUT IOOOjLjL f) STABILITY 

CIRCUIT 

o 

X 

y 

I 
I 
I 

" I 

'<s: , I 

x 

i l OCX SinS 

i20ty COs 9 

i30tySin e 
~O(XCos 9 

Figure V-3 Rectangular-To-polar Coordinate Transfonnation 
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x 2 = x I Cos& + Y I Sin & 

Y2 =YI CosG - xI Sin G 

-x---.----------------------------------I 

x 

YI 

>< 
i31 

XI 

t-------.-----6------Ix 

-YI----~------------------------------~ 

Figure V-4 Axis Rotation 
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The size of the capacitor in the stability circuit must be determined by 
trial and error. The smallest possible capacitor should be used to keep 
the loop gain as high as possible 

D. Representation of Discontinuities (2) 

Frequently, nonlinear effects in physical systems can be described graphi-
cally by continuous straight line relationships which will be termed 
discontinuities to separate them from normally-defined non-linearities. The 
discontinuities occuring in physical systems are many, but those most com­
monly encountered include simple limiting, coulomb (dry) friction, dead zone, 
gear backlash and hysteresis. All can be represented reasonably well on 
the computer by standard circuits containing diodes and/or relay compara­
tors which were discussed in Chapter II. A few circuits will be presented 
in this section for familiarity purposes. However, additional diode and 
relay circuits are presented in Appendix C in tabular form. 

1. Simple Limiting 

Probably the discontinuity that occu~s most frequently, causing a physical 
system to become nonlinear, is simple limiting. This limiting effect can 
be simulated by the diode circuit (known as a feedback limiter) 

+1 

® I e21 
1.0 + I e21 

SJ LO 

e. eo I 

SJ 
I ell 

1.0 + led 
-I 

\vhose behavior is shown in Figure V-So Between the limits, e l and e2' neither 
diode can conduct if potentiometers 1 and 2 have the proper settings. If, for 
example, the output voltage exceeds its upper limit (e > el), diode 1 con­
ducts. This places a low impedance path in parallel w~th the normal feedbacl, 
resistor of the amplifier, which greatly reduces its gain (by a factor of 
approximately 100). Since the gain is not reduced to zero, a "soft limit" 
is obtained, as indicated in Figure V-So The other diode cannot conduct 
when eo is positive because its plate-to-cathode voltage difference is 
always negative. It behaves in a manner similar to diode 1 when the out-
put voltage is negative. 

The potentiometer settings for a specified limit can be estimated by con­
sidering potentiometer 1 and its input-output relationship 
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ROUNDED, DUE TO DIODE 
NONLINEARITY 

LIMIT VOLTAGE 

------------~~----------------~~------------~?-ei 

DIODE CONDUCTS 

Figure V-5 Feedback Limiter Behavior 
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~1 = eo - k (1 

When the diode conduc~s, ~1 is zero and eo equals the limit voltage, e1. 
Therefore, the potent10meter setting, k, from equation (38) is 

k 

In general, the potentiometer setting for either limit is 

k 
1 

These settings are approximate due to the impedcnce of the diodes; there­
fore, accurate limits must be set visually. 

If hard limiting is required, the relay circuit or bridge limiter, shown 
in Appendi~: C, can be used. 

2. Coulomb (Dry) Friction 

(38) 

(39) 

(40) 

Dry friction, which is present in many physical systems, is tdea11y repre­
sented as a force, 

f 

-x < 0, f c 

and if c 
-----r-----+-----L------~x 

-x > 0, f -c -c 

Th . b d·· h 1 d . d " b b ". . t 1S can e generate uS1ng e1t er a re ay or a 10 e ang- ang c1rcu1 

-I 

-X-----f 
>-----(>--- f 

LO 

+1 
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+1 

-I 

The diode circuit, which has no feedback path other than the limiter, is a 
"soft" dry friction simulator. More sophisticated friction circuits are 
shown in Appendix c. 

3. Dead Zone 

In control systems, one is frequently required to simulate a dead zone 

-eo 

-A 
T-____ ~--------~--------~------~-----ei 

which can be mechanized on the computer by either of the following circuits: 

+1 k- IAI 
- I +IAI 

k 

e· I eo 

It 

-I 

+ 
A 

I 
A IA 

+I~ 
+ 

ei---o----------------------~ 
+ 

A 

.II A + -I--Q:O--v 
lIB 
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4. Backlash and Hysteresis 

The dead zone circuit leads quite naturally to one representing backlash 
or any ideal form of hysteresis loop 

--------~--~~~--------ei 

The circuit which will produce this effect (using a diode dead zone) is 

k 

e· eO _ei 
I eo 

k= 
IAI 

I +IAI k 

-eo 

As ei increases from zero, the dead zone does not permit any input to the 
integrator until ei - eo input exceeds the A limit. Then the integrator 
operates at a very high rate (input is to the grid of the integrator) and 
tracks the ei - eo input with no appreciable lag. When ei decreases, the 
integrator output will not change until eo - ei becomes less than -A. 
There is no fixed upper limit to the loop. Only its width is fixed by the 
deadband which can be varied by replacing the potentiometers by multipliers. 

E. Function Generator Techniques 

The guiding principle to use in choosing the computer formulation of the 
function is to minimize the effect of any errors which may arise in the 
function generator itself. For example, if the computer-scaled diagram 
shows that the output of a particular function generator is small in com­
parison with other outputs at the same point, then obviously any errors in 
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the function generator would be second-order effects, and one could probably 
go right ahead and use the simplest and most straightforward method avail­
able for generating the function. 

On the other hand, if errors of the order of a f~action of a volt in the 
output of a function generator can produce changes at other output poin~of 
the order of volts, then an investigation of the best method for setting­
in the function is in order. 

The following set of ground rules always should be considered before set­
ting-in functions on a function generator: 

Rule I 

Rule 2 

Rule 3 

Functions placed on function-generating equipment should be 
corrections only to analytic approximations to the desired 
function so that a high computing accuracy can be preserved. 

The function f(x) set in the computer should go full scale 
or as close to full scale as practicable. In other words, 
the output of the function generator should cover as much of 
the range between the reference voltage levels as possible. 

Every attempt should be made to have the independent vari­
able which drives the function generator traverse a full 
range. 

If the above rules are followed, then one will be able to utilize the maxi­
mum accuracy available from the function generation equipment. The following 
example, considered over the range 0 -1 unit for simplicity, will help to 
illustrate Rules 2 and 3. Rule 1 will be discussed later. 

F(x) VOLTS 

.80 

.40 

.20 - ----------------------------

o ------+-----t-------+----e> X (VOLTS) 
.20 • 0 1.00 

The peak value of F(x) is less than .AO and, hence, it easily can he amplified 
by a factor of 2. On the other hand, the minimum value is about.22 volts, 
so that if .20 units were subtracted from the function, our new function 
(F(x) -.20) would range between 0 and .20 units. This new function can 
then be amplified by a factor of 5, yielding the function ~ (F(x) -. 20il which 
would range between 0 and 1 unit. The difference in the computer set-up 
of the function is indicated below. 

In Case B, the effect of an error in the output of the function generator 
has been reduced by a factor of 5. 
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x 

)( 

F(X) 

CASE A 

0.2000 

+1 

5(f( X);20] 

CASE 8 

As another example, consider the curve 

52 " 
407 

-F(X) 

~I------------------+------------------+----~ X 
0.57 0.61 0.65 

where the independent variable, x, ranges between 0.57 and 0.65. It would be 
more appropriate to use x' = x - 0.61 as the driving variable where x' 
,,,ould vary from +0.04 to -0.04. We can' scale x' so that the voltage re­
presenting it at the input to the function generator ranges between -1 
and +1 unit, the scaled input to the function generator would be 
[25x~ (We might also assume, for this example, that it was appropriate 

to sca~ x in another part of the problem as ~J), 

The function, Yl' is a straight line (y = rnx + b) approximation of the 
curve, y, so that the correction term, 1y , is small at any point along the 
line. The equation for this line is 

120 + 80 /!5}{fJ (41) 

The function, y, would be scaled suitably as ~since its maximum value is 
gre·a.~tr than 200. Since 6y has a maximum of PeUs~ than 20, it may be scaled 
as[~~/20]on the function generator. For·convenience in programming, we shall 
scale Yl as ~ 

Now, since Yl y + 6y, the scaled variable will be related by.: 
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From this, we see immediately that any error produced in generating [~2~t 
is reduced by a factor of 25. 

F. Comparison of Function Generators 

(42) 

Generally, there are three types of function generators available: pot 
padders, diode function generators and curve followers. Each of these has 
an area of greatest utility, although in many instances the choice of func­
tion generator depends on the availability of equipment. 

The characteristics of each generator (see the Table V-I) determine the area 
where maximum usefulness, efficiency and accuracy can be obtained. 

On the basis both of the information presented in Table V-I and of experi­
ence, one can set down a relative rating of the various function generators 
in regard to specific factor--all other things being considered equal. The 
comparisons in Table V-II are shown only as a guide to the novice in analog 
computing and should by no means be considered as absolute. 
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TABLE V-I Characteristics of Function Generators * 

Characteristic 

Time required for 
set-up of function 

Time required to 
change function 

Driver Input 
Impedance (ohms) 

Output Impedance 
(ohms) 

Maximum Number of 
of Points 

Spacing Between 
Points 

Maximum Voltage or 
Slope Limits 

Isolation Amplifier 
Requi red (Outpu't) 

Multiplication of 
Function by Variable 
Possible 

Input Impedance to 
Variable (ohms) 

Maximum Frequency 
of Variable 

.. '~ Typical values 

Pot Padder 

15-30 min. 

15-30 min. 

Very high 
(Approaches co) 

o to 15K 
(Depends on 
Driver) 

17 

Fixed 

25 volts 
between points 

Yes 

Yes 

Curve Follower 

15-30 min. 

1 min. 

Very high 
(Approaches CO) 

o to 6K (Depends 
on Driver) 

Comtinuous line 

None 

Maximum slope deter­
mined by speed of 
driver 

Yes 

Yes 

3K to 15K (De- 6K* 
pends on Driver 
position) 

No inherent No inherent limit 
limit 

-182-

D.F.G. 

15-30 min. 

15-30 min. 

5 K to 25K depending 
on value of Input 
Function 

~O 

21 

Variable 

1,4; 2.5, 6 
Volts/Volt/diode 
(Depends on diode 
location and scale) 

No 

No 



TABLE V-II Suitability of Function Generators 

---.-------------.----------.------.------------~--------

Area of Utility Pot Padder Curve Follower DFG 

Monotonic Functions II I III 

Sharply Changing III II I 
Slopes 

Ease of Changing II I III 
Function 

Accuracy Near Zero II III I 

Long Term I II III 
Stability 

G. Practical Ape1ications - Function Generation 

1. Impulse Functions 

'An illustration of how analytic functions can be combined to generate a 
complex function can be made with the impulse function 

y 

~--=---------------------------------+t 

which can tie generated from the linear combination 

y(t) = Y1 + yz + Y3 

of three exponentials 

-a·t 
Yi = Ai e 1. i 1, Z, 3 
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The correct time constants and initial conditions for the circuit 

y 

depend on the form of the impulse function. This circuit is more desirable 
than a polynomial fit of the impulse function because it can decay to a 
hard zero which is difficult to obtain from a power series approximation. 

2. Pressure Waves 

The pressure disturbance due to a gun blast is characterized graphically 
by the curve 

P. - ---o 

~--~------------~--------------'t-

and analytically by the expression 

-t/tl P = P e (1 - t/tl) 
o 

(45) 

Note that the above relationship satisfies the major points on the curve 

P(O) = Po 

P(tl) = 0 
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and 

lim P(t) 
t-*co 

o (from the negative side) 

Differentiation of the pressure equation yields 

or 

• _ Po I P = --- (2 _ tltl) e- t tl 
tl 

p =(Polt12)(3-tltl)(e-tltl) 

p. + (2/tl)i> + (1/t12)(p)= 0 

The circuit for the generation of this function is simply 

I 
Tj 

The initial conditions 

P(O) = P 
0 

and -2P 
P(O) 

0 =--
tl 

were obtained from equations (49) and (50). 

3. Continuous Resolution 

(48) 

(49) 

(50) 

(51) 

p 

(52) 

(53) 

If continuous-resolution coordinate transformation is desired, the circuits 
previously shown can not be used because of the limited resolution of the 
sinusoidal function generators. Therefore, one must use the solution of 
differential equations for coordinate transformation rather than the famili­
ar algebraic trigonometric relationships. 

For example, consider rectangular-to-polar coordinate transformation where 

x = r cos Q (54) 

and 
y = r sin Q (55) 

Differential equations obtained fr9m these relationships are 
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y ( 
r ) + x Q (56) y r 

and r . 
x =x ( ) - y Q (57) 

r 

which can be solved simultaneously for x and y if fir and Q are available . 

r 
7---.---------~--~ 

. 
+& 

--6- -"'-'--4 

. 
r 

-YT 

y& 

-ex 

-X(o) 

x 
>----e.....-- X 

A simplified ver~ion of this circuit can be used to generate 

y = sin Q 

and 
x = cos Q 

continuously. If r is zero, the previous circuit becomes . 
G----~---------------------------------~ 

-Xo 

x 

-y 
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4. Practical Applications 

With diode or relay circuitry, many nonlinear phenomena which are difficult 
to deal with analytically can be simulated very simply on an analog computer 
as shown in the following examples. 

1. In heat transfer problems, when it is necessary to calculate 

PCp = a + bT + CT2 , and the coefficients a, b, and c depend upon 

whether the product is in liquid or vapor form, a simple switching 
circuit may be acceptable 

~pCpLiQUID 

:=:::t/ • '- pC P 

>----_ ....... + n TEMPERATURE 

PRESET VAPOR TEMP. 

Here, the liquid and vapor heat terms are generated continuously 
in the computer and the one selected is dependent upon the tem­
perature. 

2. The output of a controller may be limited to, say, 15 psi. To 
include this effect on the computer, simple limit circuits can be 
connected around the output amplifier and, depending on the 
characteristics of the controller, around the integrator. 

GAIN 

>------.Po 

3. The motion of the flow control valve is given by 

F(t) = M x + Cx + kx (60) 
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where M mass of valve, valve stern and piston 

c damping 

k valve spring constant 

F(t) = lifting function 

If the motion, x, is mechanically limited such that the flow cannot exceed a 
certain rate, it might appear that a simple limit on the output quantity, x, 
is sufficient. 

tx 

()~-----::_<1,_1 -----~ 
''-J'!:. 'oj 

jljJ 

Hmveve-r, this is not the case. It must be remembered that for the dis­
placement to be limited to a constant value, the velocity must be zero. 
A simple limit on the quantity, x, does not accomplish this. Methods of 
limiting displacement are shown in the literature (2). 

5. Dynamic Pressure 

In aircraft and aerospace applications, one is usually confronted with 
generating dynamic pressure, Q. Thus 

Q = k P V2 
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where 
p air density, varies exponentially with altitude, <0.01 l~~imass) 

V vehicle velocity, of the order of 2 x 104 ft/sec for a 
space vehicle 

and 
k = a constant 

The problem in this illustration is accuracy since both p and V vary over 
a wide range and straight-forward programming will lead to the undesirable 
product of a very large and a very small voltage. 

The accuracy and voltage range of the density computation is increased by 
mechanizing the simulation to obtain -{p which then forms the -{PI' V product 
and eventually the dynamic pressure. 

The air density is a low frequency variable; therefore, servo multipliers 
1 

are applicable if they are driven by P and P~ V. 

V, 
p2~ 

l:!:W 

v 
~ 2 

-p V 

6. Euler-Angle Axis Rotation and Matrix Inversion 

k 

One method of determining the relationships between earth coordinates of 
a point and its wind coordinates is the Euler-Angle technique. This tech­
nique, which is described in detail in the literature (2), rotates the 
axes of the earth until they are aligned with the wind or body axis. The 
rotation is done in a definite sequence, accounting for the changes in co­
ordinate values caused by the rotation. 

A typical example is the conversion of X, Y, Z to x, y, z coordinates by 
three rotations in the following order, where Xl' Yl , Zl are interim co­
ordinates 
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1) Rotate about the 2 axis by an angle If 

Xl X cos If + Y sin If (62) 

Yl -X sin 'f+ Y cos '¥ (63) 

2 2 (64) 

2) Now rotate about the Y
l 

axis by an angle Q 

x -2 sin Q + Xl cos Q (65) 

Yl Yl 
(66) 

22 2 cos Q + Xl sin Q (67) 

and 

3) Finally rotate about the x-axis by an angle 0 

x = x (68) 
Y Yl 

cos 0+ 22 sin 0 (69) 

z =-Yl sin o + 22 cos 0 (70) 

The mechanization of this transformation requires approximately IS-amplifiers, 
3-servo resolvers and all angular and original coordinage inputs. Due to the 
complexity of the circuitry, it will not be illustrated; however, the circuit 
diagram is available in the literature (2). Even more significant than the 
actual mechanization is the fact that the analog computer is capable of performing 
matrix inversion. Te above transformation in matrix notation is 

x 1 0 0 cos Q 0 -sin Q cos '¥ sin '¥ 

Y = 0 cos 0 sin 0 0 1 0 -sin If cos '¥ 

z 0 - sin 0 cos 0 sin Q 0 cos Q 0 0 

which must be inverted in a definite order. 
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CHAPTER VI 

TRANSFER FUNCTION SIMULATION 

A. Introduction 

The purpose of this chapter is to present the methods commonly used to 
simulate linear transfer functions which frequently arise in the formu­
lation of analog computer models. Prior to discussing simulation methods, 
a brief introduction to transfer function theory is necessary for back­
ground purposes. 

A transfer function is, in reality, a linear, ordinary differential equation 
which describes a particular phenomena or system in shorthand notation. It 
is usually expressed as the ratio of the response (or output) of a system 
to its forcing function (or input). It is a function of the parameters 
of the system, and either the classical operator, D, or the Laplace trans­
form variable, s. The system parameters are expressed in terms of gains, 
time constants, etc., and the classical operator and Laplace transform are 
defined as: 

t 
D .- d 1 J dt (1) -- or .-

dt D 0 

and t 

yes) = S e- st 
y( t)dt (2) 

0 
where s is a complex variable. 

Transfer functions obtained from differential equations using the classical 
operator are not necessarily equal to those obtained via Laplace trans­
forms because the classical operator does not account for non-zero initial 
conditions. For example, the transfer function for the first order equation 

in 

as 

terms 

~+ 
dt 

of the 

Y.. = x 

compared to 

y 

y = x 

classical operator is 

--L 
D +1 

its Laplace transform counterpart 

= _I_ 
x +yeo) s +1 

(3) 

(4) 

(5) 

which was obtained using the table of Laplace transform pairs in Appendix A. 
If the system described by equation (3) was initially at rest, (y(o)=o), 
the two transfer functions would be identical. 

In many instances, variables can be redefined to obtain zero initial con­
dition. In the case of the first order equation, if one defines 

z = x-x(o) (6) 
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and 

w = y-y(o) 

the transfer function in Laplace transform notation becomes 

~ 
z 

= _I_ 
s +1 

since the steady-state solution of equation 3 is y equals x. 

(7) 

(8) 

In the remainder of this chapter, it will be assumed that all initial 
conditions are zero and all transfer functions will be written in Laplace 
transform notation. 

B. Properties of Transfer Functions 

Two properties of transfer functions which account, to a large extent, 
for their high utilization in practical applications are 

and 

1) their ability to combine with each other to form an 
overall input-output transfer function for a system, 

2) their ability to predict the response of a system to 
a sinusoidal input. 

1. Combining Transfer Functions 

If one considers the block diagram of a system where each block represents 
a transfer function, an overall transfer function can be obtained using 
block diagram algebra. For example, consider two transfer functions in 
series 

x ___ ........ 1 G(sl 1-----z-......j~~1 H (s 1 

where 

and 

Since 

the over-all transfer function 
becomes 

and the block diagram reduces to 

x 

z G(s) -- = x 

-L = R(s). 
z 

-L_Z_ = -L 
z x x 

-L= 
x G(s) R(s) 

G(s) H(s) 
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Several of the most frequently used block diagram identities are shown in 
Figure Vl-l 

The form of complex over-all transfer functions in generalized notation 
is 

= 
A Sn + A Sn-l + 

n n-l 

which can be represented in terms of first and second order transfer 
functions 

sn ~ n1 ~f1n2 {I 
2Sk S22} ] TIi=l (l+Tis) ~=l +-- S + 

....:l.- = 
wk wk 

x n n 

{I 2S S S2 }] ['IT 3 (l+T jS~ ['IT 4 +~ + j=l m=l ill W 2 m m 

2. Frequency Response 

(13) 

(14) 

The frequency response of a system to a sinusoidal input can be obtained 
directly from its transfer function by letting 

s = jU) (15) 

where j is -~~l~nd U) is the frequency of the sinusoid. The resultant ex­
pression is a complex number which can be represented by a gain and a phase 
angle 0 

For example, consider the f.requency response of the first order system 
described by equation 3 

....:l.- = 1 S - jW) = (l!wt) +j (1-: wz) (16) x 1 + jW 1 - jU) 

which .is a complex number made up of real <Re) and imaginary (1m) parts. 
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H 

GI 
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Figure VI-l: Selected Block Diagram Identities 
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In the complex plane, 

1m 

I 
I+W2 

~~----~----------~~Re 

any imaginary number can be represented by a vector whose magnitude and phas;-.: 
angle are 

and 

therefore, 

where 

e = Tan -1 (~:) 

Y.. = 
x 

( 
1 ~/2 

1 + (J} J 

9 -Tan-l (w) 

2 
(1m) 

The magnitude of the vector in decibel form (~ in decibels 
is 

20 log. 

20 log 

(17) 

(18) 

(19) 

(20) 

(21) 

v\ 
.I.'..) 

(22) 

which is defined as the gain of the system. Plots of the gain and phase 
angle versus frequency yield curves which are characteristic of this transfe:,: 
function. These curves, which are referred to as Bode plots, are of the 
form, 
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/LO\IV tREQUENCY ASYMPTOTE 

I o t---"","",,-oe::w:=':-::":;-:":-:"--I"' ..... - - - - - - - - - - - - - - - - - - - - - - - - - -

-3 ~ HIGH FREQUENCY ASYMPTOTE 

BREf.\l\ 
FREQUEr,JCY~; 

Ii" 

'<".\" . 
. ",~, 

.,\. 

':, '\ 

=---------.... -."~."" .. -~ .. -.. ".-=-.... ~~ .•. -,-~ .. ,='-'''.~.~=. 
.01 

_________ ••. ~ ____________ ~~ I 

l·"~ log 10 W 

_90°_ 
L-----------·---------------------------------------------------~t~ 
----------------------------------

.01 

In practice, high and low frequency asymptotes, 'ivhich are shO\!Jl"l above, are 
used to approximate the gain frequency curve. At low frequencies, the gain 
is approximately zero 

20 log I ; I -10 log (1 -L i):::::-lO log 1 0 I 

(23) 

while at high frequencies it is proportional to frequency 

20 log I ; I = 
-10 log w

2 (1 + ~21 ::::: -20 log w (24) 

The "break frequency", which is the point of intersection of the asymptotes, 
is defined as the frequency where the asymptote and the ideal curve differ 
by 3 db. Additional Bode plot theory, manipulations, and applications are 
available in the literature (1) ,(3). 

The practical aspect of frequency response theory permits the determination 
of a mathematical model in transfer function form from experimental data. 
(These models are linear approximations of non-linear systems.) This 
technique frequently represents the only practical method of obtaining a 
mathematical model for an existing system, and is one method of introducing 
transfer functions into a simulation. 
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C. Transfer Function Simulation 

Transfer functions can be simulated by three different methods: 

1) Passive elements 

2) Amplifiers and passive elements 

3) Computing components -- potentiometers and amplifiers -­
which will now be presented in detail. This presentation 
will be restricted to first and second order transfer 
functions for the following reasons: 

a) Few mathematical models for physical systems 
exceed second order. 

b) Higher order transfer functions can be reduced 
to lower order transfer functions. 

c) Lower order transfer functions are simpler to 
scale and mechanize on the computer. 

d) Complex, overall transfer functions combine 
the individual parts of a system which nullifies the 
simulation concept of the analog computer. 

1. Passive Element Simulation 

Prior to the development of modern-day, electronic analog computers, linear 
equations were solved by direct analogy to electrical equations for passive 
element circuits. The analogies between electrical, mechanical and thermal 
parameters and variables, which is presented in Table VI-I are typical of 
the direct analogy approach. To illustrate the application of this tech­
nique, consider the mechanical system, 

x 

--1---- y
=0 

y 

whose differential equation and transfer function are 

Y.. = 
x 

+ D£y,+Ky 
dt 

1 

MS2 + DS + K 

= x 
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TABLE VI-I: Comparison of Electrical, Mechanical, and Thermal Variables and 
Parameters 

Electrical 

Inductance, L 
e L 

---;:'?-?-:;-­
_____ > iL 

di 
= L L 

dt 

F 
M 

Mechanical Thermal 

Mass, M 

FM~~ 
2 ~" x 

= M d x 

Not Applicable 

r------------------------------:---------------------------------I-----------------------~---·----

Resistance, R 

R 

e OI--------'\I\I'v------O 

6e = 

Capacitance, C 
___ ~_:> ic 

e - f1e 

~ tl e_
0
6e 

Ile= IIC 1: ic dt or ic =Cd~e . 

Voltage - e 

Current - i 

Charge - q 

~ = i 
dt 

-::. 

Compliance, K 
k 

t=~'~ 
v X 

F 
K 

kx 

Force - F 

Velocity - ~ 
dt 

Displacement - x 
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L 
k 
A 
h 

Heat Transfer Resistance 

L or 1 = 6T -- --
ka ha q 

= 

= 
= 
= 

Thickness 
Thermal Conductivity 
Area 
Fluid Film Coefficient 

Unit Capacity 

C Pv = / dT 
P q dt 

C = Specific Heat 
p 

p 
V 

= Density 
= Volume 

Temperature - T 

Rate of 

Heat Flow = q = 

Heat - Q 

~ 
dt 



Since the sum of the forces acting on the system are 

FM + FD + FK = x (27) 

and voltage is analogous to force 

e + e
D + e

k = e
f m (28) 

a series R-L-C circuit is indicated. 

L R 
---------Jf~O~O~d~4~d~~~----------~~----------

lc 

1 
T 

From TableVI-I,the voltage across each passive element can be expressed in 
terms of charge, qy, to obtain 

R dqy 
2 

e f ~ + + L~ (29) 
C dt dt2 

whose transfer function is 

~ 1 

e.f LS2 + RS + 1 
C 

(30) 

indicating that L, R, and l/c must equal M, D, and K, respectively. 
This eqality may require modification since scaled voltage eguations must 
be used, which introduce scale factors into coefficients of the original 
equations. 

In determining the transfer function for an electrical circuit, it should 
be recalled that the impedance of a resistor and a capacitor are 

Z = R 
R 

Z 
c 

1 
CS 

(31) 

(32) 
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In addition, impedances in series may be represented by a single impedance, Z 
S 

Z Zl + Z2 + Z3 s ( 33) 

and the series equivalent of parallel impedances, Z p' is 

1 1 + 1 + 1 = 
Z Zl Z2 Z3 p 

(34) 

To illustrate the application of these relationships consider the circuit, 

R C 

ei~ ~----------~- - - - -

The circuit reduces to, 

where 

and 

e' I 

Z 

Z 

= 
s 

p 

t-----~----- _eo 

R + 1 RCS + 1 
CS CS 

Rl 

1 + RlC1S 
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The transfer function is 

e Z (RIC S 
(37) 0 E 

e. Z + Z S2 + (RC + RiC) S + 1 1 S P RlC l 
+ 

Since extensive tables of passive circuits and their corresponding transfer 
functions are available in the literature (1) ,(2), additional illustrations 
will not be presented. 

The advantage of using passive elements to simulate linear systems is that 
no amplifiers or other computing components are required. However, there 
are several disadvantages which must be considered before this technique 
can be applied effectively: 

1) The derivation of all transfer functions does not account 
for loading effects which can only be eliminated by adding 
compensating passive elements or unloading circuits. 

2) The cost of precision passive elements is sometimes pro­
hibitive. 

3) The lack of flexibility, ie, a complete redesign is required 
to change the time scale factor, frequently is a major 
handicap. 

In practice, only long term, high-computer~utilization simulations can 
Justify the time and effort required to mechanize passive element circuitry 
with its lack of flexibility. 

2. Passive Element, Amplifier Simulation 

The loading problem associated with passive element simulations is eliminated 
if operational amplifiers are used in conjunction with the passive circuits. 
The generalized amplifier-impedance circuit which was presented in Chapter II, 

X----~--~Z~I----~--~~---y 
has the transfer function, 

:L (38) 
x 

where the input, ZI' and feedback, ZF' impedances can be complex R-C 
circuits. These impedances are known as "transfer impedances" 
which are tabulated in the literature (1),(2),(3) and in Appendix B. 
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These tables can be used to associate a computer circuit 
particular transfer function. For example, consider the 
lead) transfer function 

-K [~~:: ~J y 
x 

quickly with a 
lead-lag (or lag-

(39) 

Since the electrical impedance of a parallel R-C network 

c 

is 

z = 
R 

RCS + 1 (40) 

the lead-lag transfer function can be simulated using R-C networks in the 
amplifier feedback and input 

X---o("\ >U-----y 

The resultant transfer function for this circuit is 

y = 6 \ (~S: s + 1) 
x - \ ~) ~CF S + 1 , 

Therefore, the correct circuit is obtained if 

K = ~/ Rr 
Tl = ~' Cr 

and 

T2 = ~CF 
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If it is necessary to derive a complex transfer function, the transfer 
function for the five-impedance amplifier circuit (shown in Figure vr-2) 

- Z / Zl Y.. = 4 
x Z4Z3 [L + 

1 :.i- L + 1 l -, 
1 + Z2 Z3 Z : 

Z5 
Zl 4 

(45) 

can be used. For example, to determine the transfer function for the circuit 

R 

R 
~ .... --y 

c 

T 
one need only evaluate the individual impedances, make a comparison with 
Figure VI-2. 

Zl = Z4 = R (46) 

Z3 = Rl (47) 

Z5 Z2 
1 = CS 

(48) 

and substitute into equation 45. In this case, the resultant equation is the 
second-order transfer function, 

(49) 

y = -1 

x 1 + (2R
1 

+ R) C~+ RR1(CS)2 
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i I 
-----P> ---t> 

X ________ ~~~-----Z.-<~--~ ~----c)---- y 

i
l 

+ i4 i2 + i3 i4 ~ 
Z4 

i3 + i5 = 0 i5 = -L. 
Z5 

Figure VI-2 Five-Impedance, Amplifier Circuit 

which can be compared to the familiar equation, 

y = 
x 

1 

1 

+L 
w 2 

n 

to determine the parameter-passive element relationships, 

= 

and 

~2 = 

(50) 

(51) 

(52) 

This simulation method, with the exception of the loading problem, has the 
same drawbacks as the passive element method. It can be justified onJy on 
a long-term usage basis. One typical example is the simulation of 

U 235 kinetics in a nuclear reactor 'k, which we described by ~ first 
order equations. 
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These equations can be simulated using the one amplifier circuit shown in 
Figure VI-3. 

3. Potentiometer and Amplifier Simulation 

When transfer functions are simulated using standard analog computer 
components only, several factors must be considered. They are: 

1) several circuits can simulate the same transfer 
function, 

2) transfer functions, which are, in reality, differential 
equations, must be scaled, programraed and static-checked, and 

3) in a parameter study, transfer function parameters should 
be isolated on individual potentiometers. 

This section will present the established techniques for the simulation of 
first and second order transfer functions, and comment on the use of tabu~ 
lated transfer function circuits. 

To illustrate the various analytical techniques for manipulating transfer 
functions into the proper form for computer solution, and their corresponding 
computer" circuits, consider the transfer functiOl 

:;[._ K 

x -(TIS + 1) 
Equation 53 can be as 

1) (1:1S\ i) I T2/T 
Y = + - 3 
x T3S + 

expanded using partial frac ions to obtain 

(54) 

y iTr - T~ + K0- T1 - T2 
= 

x T - T TI - T I 3 

(55) 

TIS + 1 T3S + 1 

or solved for powers of S 

2 + crl + T3 ) TlT3S y Sy+y=KX +1T2 SX 
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C 
6 

2 

~----------~------------

Figure Vl-3 Reactor Kinetics Network 
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X 

Hhich yields 

1 
{ 

(Kr; -yl + KT x .. 
S 2 y 

or 

The computer diagrams associated with equation 54, 55, and 58 are 

X 
"'-(")-------1 

K [1-
T2 

TI- T 2] 
T, -T 3 

1 

I 
T2 

1 

1 

1 

- 92 

1 

liT 1 
I 

-e3 
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y 
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where 

e 
_1 

x 

~ 
x 

and 

~ = 
x 

t 

{ (Kx-V) dt 

1 -
T2/T 

3 
T3S + 1 

K 

r Tl - T2 
T T 

I- 1 - 3 
TIS + 1 

T2 T - 3 

K 
T T' 
_ 1 - 3 
T S + 1 

2 
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There is little difference among the three transfer function equations 
and their respective circuits. In the first two circuits, the maximum 
integrator outputs can be obtained from their steady-state equations 

e I 
MAX 

e 2 

MAX 

e 3 

MAX 

= 

= 

= 

K 

K 

x 
MAX 

X
MAX 

(6 2) 

(63) 

which facilitates scaling. The third circuit has no particular assets or 
liabilities. Since all amplifier outputs are defined, only the parameter 
ranges and the maximum values of x and yare required for programming. 
The maximum value of y usually can be estimated from the transfer function, 
using the steady-state relationship (S = 0), if the maximum value of x 
is known 

YMAX = ~ (65 ) 

On the assumption thq.t.all amplifier outputs can be defined and scaled from 
a knowledge of the physical system, from steady-state considerations or 
by trial and error, the selection of the proper transfer function becomes 
obvious. One either selects the most efficient (fewest amplifiers) circuit, 
which tends to combine and distribute system parameters, or the most practical 
circuit for a parameter study, which isolates all parameters on individual 
potentiometers. 

D. Efficiently Programmed Transfer Functions 

The most efficient programming of first and second order transfer functions 
is based on the circuits and equations shown in Figures VI-4 and VI-5. 
Tabulations of transfer function circuits, which are derived using these 
efficient circuit relationships, are available in the literature (1) (2) (3), 
and are illustrated in Appendix B. Tables of transfer function circuits 
frequently contain errors; therefore, one should use these circuits with 
caution. 

These circuits are normally accompanied by a rough Bode plot which indi­
cates the break f.requencies of the transfer function time constants, and 
the potentiometer-parameter interrelationships. The Bode plot provides the 
approximate response of the transfer function of interest in terms of 
asymptotes, and the relative magnitudes of its time constants. 
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x 

y. cs + cd 
::: 

ab 
x S + d eb 

~ ::: 
a ec 

x s + d - eb 

Figure VI-4 Generalized First Order Transfer Function Circuit 
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x 

q 

"'----..( r 

2 
~ ; gs + (bg + eg - ah - ck) s + (beg + adk + chg - dgg - aeh - bck) 
x s2 + (b + e - hr - fk) s + (be ~ fhq + dkr - dq - bfk - ehr) 

(a - rg) s + (rck + ae + ggf - cg - rge - kfa) 
2 s + (b+e - hr - fk)s + (be + fhq + dkr-dq-bf~-ehr) 

~ ; (gf - c) s + (gfb + rch + ad - afh - cb - rdg) 
x s2 + (b + e - hr - fk) s + (be + fhq + dkr - dq - ehr - bfk) 

Figure Vl-5 Generalized Second Order Transfer Function Circuit 
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To illustrate the use of the generalized equations and the tabulated cir­
cuits, consider the transfer function 

and its Bode plot 

which indicates that Tl > T2 • A comparison of this transfer function to 

the generalized equation yields 

a = c 

d 

and 

e = 

= KT2/T 
1 

where b is the degree of freedom which must be specified. 

The transfer function for Z is 

Z 
X 

= 

{(; 9 ) 

(66) 



x 

Therefore, the maximum value of z can be estimated from 

ZMAX K = b 

The degree of freedom, b, which controls the magnitude of the output of the 
integrator must be selected to insure that Z is properly scaled. 

Second order transfer functions are treated in a similar manner. However, 
in the interest of brevity, they will not be discussed at this time. 

E. Isolated-Parameter Transfer Function Circuits 

To obtain isolated parameter circuits, one need only consider the generalized 
transfer functions 

and 

y. = 
x 

y. = x 

K (AS + B) 
CS + D 

K [AS: + 
DS + 

BS + ~J ES + 

whose circuit diagrams are 

8 

and 

X 

De- Bx 
1 

A 

Ce -AX 

jt (Fe -ex )dt 
o 
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where 

y = kc (74) 

These generalized circuits must be applied intelligently if any of the 
coefficients are equal or zero, which leads to circuit simplifications. 
For example, if 

y k = x 82 + a 8 + 

then (by comparing equations 

A = B = 0 

C = k 

D = 1 

E = a 

and 

F = b. 

The resultant circuit is 

X 

which can be simplified to 

x 

b 

73 and 75) 
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(76 ) 

(77) 

(78 ) 

(79 ) 
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x -'1 

a 

F. Scaling and Static Check Considerations 

Transfer functions are scaled and static checked in the same manner as 
ordinary differential equations. This is readily illustrated by example. 
Consider the transfer function for a 2-mode pneumatic controller 

(TRS + ~r) (81) M. = K c 
€ TRS + 

where 

I:!.P = control output 

TR = reset time 

K -- reset gain r 

and 

K = coiitroller gain c 

In practice, controllers are simulated on computers to determine the opti­
mum controller settings, K and-'T

R
.' -The output pressure difference, /:::.P, nor­

mally has fixed limits. A~sume that a preliminary problem analysis indicates 
indicates 

0.5':::: Kc ::;, 1.0 

-7'. 5 ~ ~P,::;' 7. 5 

1 < T 
R 

K 
r 

< 10 

= 200 
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and 

-0.2 ~ e ~ 0.2 

The scaled equation is 

~v:~ = (~~) [~ ! ~:: TJ (82) 
or 

~t [[* J - 0.1 :C [5 e~ = (lOi
R

) [(:C) [ ~ J- ti~) [ ~~ ~ (83) 

The computer diagram for equation 83 is 

100 
K ... 

-1ST 

!Q.. [M..] _ Kc [s€] 
K, 10 5 

{ [~~l -O.I-f [5E] r 
-[~ 

.1 
8 

+.75 

-.75 

which can be static . checked by assuming e is 1110~ f) and- 'lR are one, ~ is 200. 
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KC is 3 and the integrator initial condition, ~P - KC€' is 2. Therefore 

the potentiometer settings are 

Pot if 

1 

2 

3 

4 

Since the integrator output is 

the output of amplifier 1 is 

Function 

KC/S 

100/K 
r 

1/10 TRS 

b:.p - K € c 
10 

(&~] -0.1 
Kc 
5 

Setting 

0.6000 

0.5000 

0.1000 

0.2000 

[5~)= 0.2 MU 

Kc r5€1 = 0.23 _ a 30 = 0.28 MU 
5 t J 0.20 • 

and the check point reading of amplifier 2 is 

(85) 

In computing the static check for this and other transfer functions, the 
input and integrator outputs must be specified in order to compute the 
static response. 

G. Differentiation Circuits 

An ideal differentiation circuit is 

R 

X------f)It----~CCJ~ y=- RC.Q.!.. 
dt 

However, it is seldom used in practice because it amplifies low level noise 
and hum which are present in all analpg computers. If differentiation is 
required, several approximate differentiation circuits are available which 
do not have this problem. 
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If a resistor, Rl is placed in the input of the ideal differentiation 
circuit 

its transfer function becomes 

Y.. = RCS 
x 

which approaches a true differential circuit if Rl is small. For effective 
operation, the time constant, RIC, should be five to ten times smaller than 
the smallest time constant in the input. In practice, an ungrounded potentio­
meter can be used as Rl 

I MEG 

:~~--~'ri~~r:c;J~ ~-

to determine the effect of its magnitude on the output by trial and error. 

Another approximate differentiation circuit is obtained from the equation 

(I-a) 

\vhose circuit is 

x----~ 

£y + 
dt 

a 

y 
dx 
dt 
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dx 
As "a" approaches unity, y approaches dt. The magnitude of "a" depends on 

the frequency of x. If "a" is too large, a high frequency input will 
cause oscillations in the circuit. 

A final example is the circuit 

X-----4 

. 
y -y 

-y 

If G is large and x is not a high frequency variable, than y and x will be 
equal and the integrator input must be y or x. If G is too large, the cir­
cuit will break into oscillations; therefore, it must be determined by 
trial and error. 

Fortunately, differentiation is not required in most simulations. It should 
be avoided if possible. 

H. Conclusion 

In conclusion, the analog computer simulation of transfer functions offers 
flexibility, accuracy and the elimination of frequency response problems 
which are adverse effects encountered using passive elements. In spite 
of the cost differential, computing components still represent the most 
practical means of simulating transfer functions, especially for short term 
simulations. 
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CHAPTER VII 

TRANSPORT DELAY SIMULATION 

A. Introduction 

This chapter describes typical analog computer applications requlrlng 
transport delay, and outlines the most common techniques for achieving it. 
Although it is written for readers with no previous experience with delay 
circuits, the circuits given in sections C and I will be of interest to 
readers familiar with the literature on delay approximations. 

Many of the published delay circuits are either incorrect, wasteful of equip­
ment or poorly scaled. The circuits given in this chapter have been carL 
fully checked for accuracy, and care has been taken to optimize them from 
the standpoint of scaling and equipment economy. 

B. Definition of Delay; Need for Delay 

In many studies, it is necessary to represent on the computer a pheno­
menon called transport lag, dead time or delay. This need arises in many 
problems in wave propagation, and in studying or controlling systems con­
taining a delay device. 

Mathematically, a delay box is a device that accepts a time-varying input 
and produces an output which is equal to the input, but displaced in time. 
This property can be expressed by the equation 

y (t) x (t-T) Eq. I 

where x (t) is the time-varying input, y (t) the output and T the length 
of the delay. Figure VII-I shows a block diagram of the relation between 
the input and the output. Figure VII-2 shows a typical plot of input and 
output versus time. 

x·(t) SECOND 
DELAY 

I ~(t) :=: 

Figure VII-I 
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TIME 

Figure VII-2 

In most applications, the delay time, T, is constant but occasionally it 
is necessary to regard it as a function of time. Most of the circuits 
described below are applied most easily to fixed delay times. Variable 
delay times are discussed in Section I. 

The need for a delay box in an analog computer arises whenever the system 
to be simulated contains a delay. Typical examples are: 

1) Industrial processes: chemical reactors, heat exchangers, and 
similar systems in which fluid flows through pipes. If fluid 
flows with a steady velocity, V, through a pipe of length, L, 
and if plug-flow conditions are assumed (no mixing within the 
pipe), then the material that leaves the pipe at time, t, is 
the same material that entered it at time t-T, where T ; L/v. 
Any variable property of the fluid, such as temperature or the 
concentration of some dissolved substance, will be subject to 
delay. 

2) Wave propagation studies: radar, sonar, mechanical shock waves, 
etc 
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3) Steel-strip rolling mill control, where the thickness of the 
strip must be regulated. Although the thickness is determined 
by the position of the rollers, the thickness is not measured 
until some time after the ~trip leaves the rollers. 

4) Biological studies, in which a drug is injected into the blood­
stream and its effect "downstream" is measured at some later 
time. Here, unlike example 1), plug-flow assumptions are 
usually unrealistic and the "pure delay" may have to be com­
bined with a "mixing effect", generally a first-order lag. 
Of course, this mixing may be included in industrial simulations 
also. 

5) Statistical data reduction, where it is necessary to evaluate 
integrals such as 

!f(t)eg(t-T) dt 

jf(t).f(t-T) dt 

(Cross-correlation) 

(Auto-correlation) 

(1) 

(2) 

6) Design studies of suspension systems for multi-axled vehicles. 
In an automobile suspension system, for example, any input 
disturbance (say a bump in the road) that strikes the front 
wheels will strike the rear wheels T seconds later. Here, 
as in example 1), we can determine T by the equation T = Ltv, 
where L is the wheel-base and V the car's velocity. 

In everyone of the above cases, and in many other applications, there is 
need for an electrical delay box, one that will accept a time-varying voltage 
as an input, store it, and produce a time-varyi~g output that represents 
the delayed input. 

C. Methods of Achieving Delay on a Computer 

1. Tape Transport 

Probably the most straightforward approach to the problem is to record 
the signal on magnetic tape and play it back into the system by means of 
a suitably-placed playback head. Figure VII-3 presents the basic idea. 
Note that the tape moves in a continuous loop. The delay time is given 
by T L/V, where L is the length of tape between the recording and play-
back heads, and V is the tape speed. 

r(t) FROM 
COMPUTER 

T t-T) TO 

COMPUTER 

RECORDING 
CIRCUITRY 

PLAYBACK 

CIRCUITRY 

-222-

Figure VII-3 

RECORDING HEAD DIRECTION OF 
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Note that the playback head is placed immediately before the recording 
head so that new values of f(t) are recorded on a section of tape immediately 
after the old values are read out. 

2. Analog Point Storage--the Capacitor Wheel 

Another technique is to sample the input voltage at discrete points 
in time, store the sampled values on charged capacitors and read these 
discrete values out later. This technique is illustrated in Figure VII-4 
which shows a so-called "capacitor wheel." A number of capacitors are 
mounted on a wheel which is allowed to rotate. The voltage, f(t), is 
fed into one capacitor after another and a discrete value of f(t) is stored 
on it as the contact is broken. Note that each capacitor is read out to 
produce f(t-T) just before it is re-charged, to produce the new value of 
f(t). The output is a "staircase" approximation to f(t-T), as in Figure VII-So 
In actual practice, the capacitors are generally stationary and relays are 
used to switch them in and out of the circuits instead of brushes, slip-
rings, etc. 

f(t) FROM COMPUTER 

f(t-T) TO 

COMPUTER 

BRUSHES 

OUTPUT 
BUFFER 

CIRCUITRY 

Figure VII-4 A "Capacitor Wheel" 

TIME 

Figure VII-s "Staircase" Output Produced by a Capacitor Wheel 
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3. Digital Point-Storage-- Hybrid Delay Program 

An approach similar to the capacitor wheel, but using digital storage 
instead of capacitors, is blocked out in Figure VII-6. The analog voltage 
is sampled, converted into a digital number and stored in digital form. 
Core storage, tape, drums, delay lines or any other form of digital 
storage may be used At a later time, the number is brought out of storage 
and converted to an analog voltage, producing the output f(t-T). The out­
put is a staircase function~ as in Figure VII-So 

f (t) FROM ANALOG-TO DIGITAL DIGITAL-TO f (t -T)Tq. 
"'" ~ ~ 

ANALOG - DIGITAL STORAGE ANALOG ANALOG-
COMPUTER CONVERTER CONVERTER COMPUTER 

Figure VII-6 

Both this hybrid method, and the capacitor wheel mentioned above, 
can be modified to produce linear interpolation between stored values 
rather than the "staircase" output of Figure VII-So The same curve 
with linear interpolation is shown in Figure VII-7. 

T t 

Figure VII-7 The Curve of Figure VII-s Reproduced with Linear 
Interpolation 
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4. Curve-Follower Techniques 

A delay box can be constructed from a strip-chart recorder by having 
an oscillograph pen produce a graph of the input, x (t). "Downstream" 
of the writing pen, a sensing unit tracks the variable with a delay of 
T seconds where T L/v. (Here, L is the length of the strip-chart 
paper between the recording pen and the sensing unit, and V is the paper 
speed.) 

To enable the sensing unit to track the curve; the pen must produce 
the graph in conducting ink. The curve is energized by a high-frequency 
signal, and the sensing unit positions itself above the curve by sensing 
its magnetic field. Alternatively, a photo-sensitive unit may be used 
and the graph may be drawn in ordinary ink (opaque, but non-conducting). 
In either case, the sensing unit must be connected to a suitable trans­
ducer (such as a linear potentiometer) to produce an output voltage pro­
portional to its position. 

This method is clumsy to set up, is limited in frequency response and 
requires a considerable amount of expensive and "touchy" special-purpose 
equipment, but it represents one approach to the problem that has been 
tried. A modification of this procedure involves having an operator 
position the transducer manually, thus eliminating the need for an 
electrical or photo-sensitive sensor. 

5. Relay Circuits for Inputs of Known Form 

If the signal to be delayed is an input signal (independent of the 
signals generated on the rest of the computer), and if it has a simple 
kno~~ form (a step, a ramp or a sinewave), then relay comparators (or 
solid-state switches, if available) provide the e'asiest and most accurate 
solution. 

An example would be a step response study of the automobile suspension 
system described above. If it is desired to have the same disturbance (a 
step) strike the rear wheels T seconds after striking the front, a compara­
tor can be used to introduce the desired step after T seconds of computer 
operation. 

If ramps or sinewaves are the inputs, these can be generated by inte­
grators in the usual manner. The comparator can then be used to put these 
integrators into the OPERATE mode after T seconds of computer operation. 

6. Pade and Pad~-Type Approximations 

A technique which involves only standard analog computer components 
(integrators, pots, summers, and inverters) is the so-called Pad: approxi­
mation. In this approach, the delay box is represented by a linear trans­
fer function 

y (s) 
X (s) 

-Ts 
e (3) 

This transfer function can be derived easily by means of Laplace trans­
forms, or by making use of the fact that the amplitude response for a 
sinusoidal input must be l,and the phase shift for all frequencies must 
be Wt 
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No electrical network has this transfer function exactly, but it can 
be approximated. Since the most general transfer function that can be 
represented on the analog computer is a rational fraction, it is desirable 
to approximate the exponential function as a rational fraction, that is, 
as a ratio of two polynomials. The higher the degree of the polynomials, 
the better the approximation and the more amplifiers will be required to 
achieve the transfer function. 

Four of the most commonly used transfer-function approximations to 
the exponential function are given below (the subscript refers to the order 
of the transfer function): 

f o d P d' .. ~rst-or er a e approx~mat~on 

1 - Ts/2 
PI (s) = 1 + Ts/2 

second-order Pad' approximation 
2 2 

P (s) = 1 -(1/2)Ts + (1/12) T s 

2 1 +(1/2)Ts + (1/12) T2s2 

fourth-order Pad' approximation 

P (s)= 1 - (1/2)Ts + (3/28) T2s2 - (1/84) T3s 3 + (1/1680) T4s4 

4 1 + (1/2)Ts + (3/28) T2s2 + (1/84) T3s 3 + (1/1680) T4s4 

fourth-order StubbS-Single approximation 

(4) 

(5) 

(6) 

1 - (1/2)Ts + (15/134) T2 s2 - (13.55/1072) T3 s 3 + (1/1072) T4s4 

S4 (s) = 1 + (1/2)Ts + (15/134) T2s2 + (13.55/1072) T3 s3 +(1/1072) T4s4 (7) 

Figures VII-8 through VII-II are recommended circuits for obtaining these 
transfer functions. 
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~(t) 11- (t) 'la X (t-T) 

3 

, 
Figure VII-8 Circuit for the First-Order Pade Approximation, with Typical Rp.sponses 

-z, (t) 
-yet) ~-Z(t-T) 

3T 

TYPIC L STEP RESPO SE 

Figure VII-9 Circuit for the Second-Order Pad~ Approximation, with Typical Responses 
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~ - -:t (t-T) 

(t)~ +~ Ct-T) 

2 

Figure VII-IO Circuit for the Fourth-Order Pad: Approximation, with Typical Responses 

- (t) ~-X (t-T) 

(t) -a + X (t-T) 

2T 

Figure' VII-II Circuit for the Fourth-Order Stubbs-Single Approximation, with Typical 
Responses - 228-



These fractions are all good approximations to the exponential 
for small values of Ts (low frequencies and/or short time delays). 
course, the higher-order approximations are better. In each case, 
the numerator by the denominator will produce a power-series in Ts 
closely approximates the power-series for the exponential function: 

-Ts 
e 

function 
Of 

dividing 
that 

(8) 

For the first-order Pade approximation, the first term to differ from 
the corresponding term in the exponential series is the fourth term (the 
term involving (Ts)3.). 

For the second-order Padt approximation, the first term to deviate is the 
sixth. For the fourth-order Pad~ approximation. the first deviation is in 
the tenth term. Higher order PadE! approxima-~t.':(l_ns are seldom used since the 
number of amplifiers involved becomes prohibitive. 

The coefficients of the Padl approximation are defined and calculated 
so that the greatest possible number of terms in the quotient will agree 
with the corresponding terms in the exponential series. This gives the best 
possible fit to the exponential function for small values of Ts (low fre­
quencies or short term delays). The coefficients of the Stubbs-Single 
approximation (Ref. 1) are close to the Pad~ coefficients, but they have 
been slightly modified. The result is an approximation that is not quite 
as good as the PadG for small values of Ts, but is slightly better for 
larger values (see the section on accuracy, below). 

The fourth-order Padl and Stubbs-Single approximations are very close, 
as inspection of the co-efficients indicates. The step and sinewave responses 
are very similar. Note, however, that the true Pad{ circuit uses one less 
pot. 

7. Scaling 

If the input, x(t), to the delay box is a properly scaled voltage, 
then the output, yet) ~ x(t-T), is properly scaled also. It is, therefore, 
not necessary to worry about the output scale factor if the input is properly 
scaled. 

As for the outputs of the integrators, they must be scaled to achieve 
reasonable pot-settings and integrator gains, and to prevent amplifier over­
loads. The recommended circuits accomplish this. For time delays greater 
than 1 second, all pot-settings are < 1.0. For time-delays less than 1 
second, the liT pot-settings become greater than 1, and additional gain is 
required on the integrators. The easiest way to do this is to change the 
feedback capacitors. A ten to one decrease in feedback capacitors on all 
integrators will extend the range down to 0.1 second. 

Each of the recommended circuits has been tested on a computer with full­
scale step inputs, sinewave inputs of various frequencies and a sufficiently 
wide variety of other inputs to assure that the integrators will not over­
load in a practical problem with a properly scaled input. 

The reader should be warned that there are a number of poorly scaled 
Pad~ circuits in the literature. Figure VII-12 gives an example of such a 
circuit. This circuit is obtained from the circuit of Figure VII-lO by 
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X,(t) 

Z (t -T) 

+ (t) -; + x (t-T) 

Figure VII-12 Fourth-Order Pade Circuit similar to many found in the 
literature. Although it uses two fewer pots than the re­
commended circuit, it is very poorly scaled and overloads 
can occur even with properly scaled inputs. 
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"pulling the factor liT through the integrators". In other words, each 
integrator output is re-scaled by a factor of T. The circuit uses two fewer 
pots and is simpler to patch (no pot feeds more than one amplifier). However, 
it is almost impossible to avoid overloads with properly scaled inputs. 
For example, it is not hard to show that, if T - 3 seconds, the steady-state 
output of the first integrator is 3 times the steady-state value of the 
input. The steady-state output of the first integrator is directly pro­
portional to the length of the time delay. This circuit is not recommended. 

With the recommended circuit, changing the delay time consists of changing 
all pot-settings in front of integrat&rs by the same factor. Since this 
amounts ~o changing the time-sealing of the circuit, it does not interfere 
with TIla1gnitude scaling. The poorly-scaled clircuit does not have this pro­
perty since some integrators do not contain the factor, lIT, and one of the 
summer inputs does. Hence, a change in the delay time changes the amplitude 
sealing. 

D. Accuracy 

All the methods listed above are most accurate when the frequency of the 
signal to be delayed is low and the delay time is short. The accuracy 
deteriorates for high frequencies and long delay times. The error is a 
function of the product of the input frequency and the delay time. 

This is most obvious for the Pad6 approximation since this technique is 
based on approximating the exponential function by a rational fraction, 
and the magnitude of the error depends upon the size of the product, Ts. 
If we set s =jw, it becomes apparent that it is the product of the time 
delay and the radian frequency of the signal to be delayed that is the 
significant factor in determining the error. We may increase either one, 
provided we decrease the other proportionately, and the product, and 
therefore the error, will remain the same. 

It is somewhat less obvious but equally true that the other methods are 
subject to essentially the same limitation. For instance, tape transport 
mechanisms are limited in their frequency response. To improve the fre­
quency response, we can speed up the tape, which results in a proportional 
decrease in delay time. 

As for the point storage techniques, both the capacitor wheel and the 
hybrid point storage program are subject to a similar limitation. The 
limitation here lies in the fact that these are sampled data systems and, 
therefore, limited in their frequency response by the sampling rate. To 
increase fidelity at high frequencies, we must sample more frequently; 
this means speeding up the rotation of the capacitor wheel or speeding up 
the sampling rate of the hybrid program. If the amount of storage is left 

unchanged (that is,the number of capacitors on the capacitor wheel or the 
number of words in digital memory), then the delay time is proportionately 
shortened. 
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In each case, we can increase both frequency response and delay time only 
by increasing the total amount of storage available in the system. 
For the Pade approximation, this means increasing the order of the approxi­
mation since the number of integrators in the system is a measure of the 
amount of information that can be stored. For the tape transport system, 
this means increasing the amount of tape between the recording and play­
back heads. For the curve follower technique, it means, of course, in­
creasing the spacing between the writing pen and the pickup. For the point­
storage techniques, it means increasing the number of capacitors or the 
number of words of available memory. 

It should now be apparent that we can evaluate any delay device in terms of 
the total amount of storage of which it is capable. For the Pad~ or Pad~­
type approximations, this storage is measured in radians (the product of 
the frequency in radians per second and the delay time in seconds). 

Typical upper limits for ~ are O. 6 radians for the first order Pad~ approxi­
mation, 2 radians for the second order, and 6 radians for the fourth order. 
The Stubbs-Single approximation is slightly worse than the 4th order Pad~ 
for ~ < about 6 radians, and slightly better for ~ between 6 and 7.5 
radians. At about 7.5 radians, both approximations are poor. 

With point storage techniques, the amount of storage is usually measured 
in words or bits. A direct translation between the number of radians 
available in a Pad: approximation, and the number of bits or words avail­
able in a point storage approach is not possible since the number of bits 
required to represent a cycle of a sinewave is dependent upon the inter­
polation scheme used, and also upon the precision required. However, this 
method is capable of a much greater amount of storage than any Pad~ or 
Pad~-type approximation that uses a reasonable number of amplifiers. 

Note that the Pad~ and Pad~-type approximations all show poor step response. 
This is not a serious drawback, since it is not very often that an input as 
"violent" as a step actually \vill be fed into a delay box in a practical 
problem. In most applications, step inputs occur, if at all, only at the 
very beginning of a problem. In this case, most of the initial "ripple" 
can be removed by the method of the next section. 

E. Initial Conditions 

Equation I does not completely specify the output, y(t), for all t > O. If 
x(t) is defined for t ~ 0 only, then it should be possible to "load" the 
delay box with an arbitrary time - history for O~ t ~ T. 

This is possible with any of the above methods. In most cases, it is fairly 
obvious what has to be done: record an arbitrary function on the tape 
between the heads at the start of computation, charge each capacitor in 
the capacitor wheel to an appropriate voltage, etc. For the Pade approxi­
mation, the desired initial time-history can be approximated by establishing 
appropriate initial conditions on the integrators. 

However, in most cases, it is not worthwhile; most of the time it is desired 
merely to have the output equal to zero for 0 < t < T. This is usually 
easier to accomplish than loading an arbitrary-tim~-history, and systems 
like the capacitor wheel are generally provided with a method of clearing 
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the storage, but none for charging each individual capacitor. For the· 
Pade approximation, putting no IC on the integrators will assure that the 
output remains zero for 0 < t < T except for a slight initial "ripple" 
dependent upon the behavior of-the input function. 

If desired, a circuit such as shown in Figure VII-13 can be used to provide 
an arbitrary time-history for 0 < t < T 

-REF 

-REF. +t 

~(t) = 'Zct -T) 

xc t ) DELAY BOX 
-----------~(ANYTYPE)~---~ 

Figure VII-13 

Of course, any appropriate function generation technique can be used 
instead of the DFG to generate the desired time-history. If the DFG is 
omitted and the "-" contact of the relay grounded, then this method 
assures yet) = 0 for 0 < t < T. This is one way to take most of the initial 
"ripple" out of the Padr- approximation. The relay comparator may, of 
course, be replaced by an electronic switch if one is available. 

F. Time Scaling 

The modifications to be made, if the problem is not run in real time, 
are fairly simple. A change of time scale obviously means a proportional 
change in delay time. For example, if the system has 100 second time 
delay and the problem is run 50 times faster than real time, the delay 
time on the computer will be 2 seconds. 

The Pade approximation is by far the simplest to implement in case the 
problem is to be run both in repetitive and non-repetitive operation. 
The necessary shortening of the delay time for repetitive operation is 
taken care of automatically if ordinary analog computing integrators are 
used, since the feedback capacitors on these integrators will change 
along with the feedback capacitors on every other integrator in the problem. 

G. Choice Among Various Methods 

Only a few of the methods mentioned above are suitable for general purpose 
use. The tape transport method, while it is very simple in concept, puts 
very stringent requirements on the behavior of the recording and playback 
circuitry. Tape transport mechanisms of a required quality are fairly 
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clumsy and expensive at the present state of the art. 

The capacitor wheel offers a considerable saving in amplifiers in com­
parison with the Pade approximation of equivalent quality. However, it 
requires logic and timing signals, switches and buffer circuitry which 
are not easily adapted to other applications. Therefore, such devices 
are practical only in installations where problems involving transport 
delay are run fairly frequently. A dual channel capacitor memory, 
capable of delaying two independent electrical signals and using 16 capa­
citors per delayed signal, is available from Electronic Associates as an 
accessory for its TR/ZO computer. All the neoessary timing and switching 
circuitry is included. The sampling rate is adjustable from 10 samples 
per second to 1 sample per 10 seconds, offering delay times from 1.6 to 
160 seconds. 

Point storage techniques involving digital storage are quite accurate and 
economical for large problems. Programs have been written for hybrid 
computers utilizing linear interpolation between stored values and providing 
several hundred radians of storage. Although this technique is not practi­
cal for the occasional small problem, it is the only possible approach 
for large problems involving hundreds of radians of storage and many delayed 
signals. 

Curve followers are generally awkward to set up, limited in frequency 
response and unreliable. In addition, the use of a curve follower as a 
delay unit ties up the mechanism of a recorder or plotter which could 
otherwise be used to record signals of more interest. 

The relay circuits described in section C are, of course, the best 
approach for delaying inputs of known form. However, their area of appli­
cability is very limited. 

For the man who has only an occasional problem involving a moderate amount 
of transport delay and who does not want to tie up money in a special-purpose 
unit, the Pade approximation represents the best approach. Since it 
involves using only general purpose analog components which are part of 
the computer anyway, it should be the first method to be considered in 
any application. Only if sufficient components for a Pad~ approximation 
are not available, or if the problem requires too much storage for a 
Pade approximation of reasonable size (fourth order or less) should 
serious consideration be given to the other methods. 

H. Practical Progrannning Steps 

1. Determine the approximate natural frequency of -the signal to be 
delayed. This can be determined by examining a linearized model 
of the differential equations to be solved, or by inspection of 
the computer circuit generating the signal. A good rule is to 
look at the integrator gains. If the problem has been properly 
voltage-and time-scaled, the total input coefficient on every 
integrator should be approximately the same as that on any other 
integrator. (By input coefficient is meant the product of the 
pot-setting and the amplifier gain.) The average of the inte­
grator input coefficients in the main computing loop is the 
approximate natural frequency of the solution in radians per 
second of computer time. 
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2. Multiply the radian frequency by the delay time. Note that this 
resulting figure, in radians, is independent of time scaling. It 
'is, of course, essential to be consistent. If the radian fre­
quency has been calculated in radians per second of computer 
time, the delay time should also be expressed in seconds of 
computer time. If the radian frequency of the original system 
is used, then the original problem delay time should be used. 
In either case, the result should be the same. 

3. If the total amount of storage required is less than about 6 or 
7 radians, then it is practical to use a Pad~ approximation of 
fourth order or less. See section D for accuracy estimations 
of the various Pad~ circuits. If more than 6 radians of storage 
are required, it may be necessary to use a delay device of 
greater storage capability such as one of the point storage devices 
outlined above. If such point storage devices are not available, 
it is, of course, possible to use a higher order Pade approxi­
mation. However, the total number of amplifiers required for 
higher-order approximation is quite large. Section I gives in­
structions on progrannning a higher order P ad~ transfer function. 
It should be observed that an eighth order P ad~ approximation is 
considerably better than two fourth-order Pad~ approximations in 
cascade, and uses fewer amplifiers. 

4. Check the adequacy of whatever delay device you are using on the 
computer. The delay device should be checked while it is connected 
as part of the circuit so tnat the input is the actual input signal 
from the problem itself, rather than an artificial input such as 
a step, ramp or sinewave. If both the input and the output are 
plotted versus time (this will probably take two successive computer 
runs), the result should be a graph such as that of figure VII-2. 
If the delay device is inadequate in its total storage capability, 
this will produce distortion in the output, and the extent of such 
distortion can easily be checked visually by examining the graph. 

I. Variable Delay Times 

In many of the problems mentioned above, the delay time can be variable. 
That is, T may be a function of time. For instance, in industrial processes 
where fluid is flowing through pipes, the flow velocity, V, may be increasing 
or decreasing with time as additional pumps are turned on and off. In 
wave propogation studies, the so-called Doppler effect is due to the fact 
that the time required for a sound wave, light wave or shock wave to get 
from one body to another is variable in case the bodies are moving with 
significant relative velocity. In automobile suspension studies, if a 
vehicle is accelerating or decelerating, then the delay time between a 
bump hitting the front wheels and the same bump hitting the back wheels 
is inversely proportional to the car's velocity. 

Variable delay times can be produced, in principle, by any of the above 
delay devices. In tape transport delay devices, the changing delay time 
may be produced by changing the tape speed. Similarly, changing the speed 
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of rotation of the capacitor wheel or changing the sampling rate in a 
hybrid storage circuit will change the delay time appropriately. In all 
of these cases, information is flowing in and out of the storage medium at 
a certain rate. Changing the speed of the storage medium changes the 
rate at which information flows in and out. There is strong analogy 
between changing the rate at which information flows through the delay 
box, and changing the flow velocity at which the fluid flows through a pipe. 
It is, therefore, very clear what to do to obtain a variable delay time. 
How to do it is a different matter. It may prove impractical to design 
a tape transport mechanism that will increase or decrease the speed of 
tape motion on a continuous basis in TIesponse to an analog signal repre­
senting the flow velocity. On the other hand, with hybrid point storage, 
it requires only a slight bit extra of timing and logical circuitry to 
change the rate of the sampling pulses in response to an analog signal 
proportional to the variable flow velocity. 

With the Padt approximation, the delay time is represented by a pot­
setting at the input to every integrator. Replacing these pots by multi­
pliers enables a variable delay time to be achieved. Although, in prin­
ciple, any type of multiplier could be used, the presence of the same 
variable factor, namely liT, in several different places indicates a servo 
multiplier will be the logical choice. Since the delay time is inversely 
proportional to the flow velocity, we may take the voltage proportional 
to the flow velocity, which is coming from some other analog circuit, and 
feed it directly into the drive on the servo multiplier. The coefficient 
on each of the servo multiplier cups then will be directly proportional 
to the flow velocity, and therefore inversely proportional to the time. 
Note that the Pad~ circuits given in section C all involve pot-settings 
which are inversely proportional to the delay time but are not equal. 
Since the cups on the servo multiplier must have the same setting, it 
is necessary to modify these circuits by using unequal amplifier gains on 
the various integrators. This creates a loading problem, since all cups 
on a servo multiplier should be loaded the same way for accurate multi­
plication. 

However, loading error will result merely in a small distortion of the co­
efficients of the transfer function. Since the Pad: transfer function is 
only an approximation to the desired exponential, it is not worthwhile 
to worry about slight errors in the Pad{ coefficients (the low-order terms 
are important because they determine steady-state response, but the higher­
order terms are often approximated as in the Stubbs-Single approximation. 

Figure VII-14 gives a recommended circuit for achieving variable delay 
times, together with instructions for loading compensation. If these 
instructions are followed, there will be no loading error on the A, B 
and E cups. This assures that the first two terms in the numerator and 
denominator of the transfer function will be correct. It means, too, 
that the steady-state gain will be unity and the low-frequency delay will 
be correct, which is important to maintain the desired steady-state 
relationships (See reference 6). 

In Figure VII-14, every cup except the C and D cups "sees" a "gain 4" 
load -- four gain-one resistors in parallel. The follow-up should be 
loaded accordingly. 
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Note the gain on the third integrator, fed by the C - cup. Comparison 
with Figure VII-IO indicates that this should be 70/15 = 14/3 = 4.667. 
Instead, it is 5. The gain is about 5% higher than it should be for a 
true Pade, but the loading error will partially compensate for this as 
this cup is more heavily loaded than the follow-up cup. Similarly, 
the input gain on the last integrator should be 9, not 10. The gain is 
11% higher than it should be, but loading error will partially compensate 
for the too-high gain. The result is a transfer function with co-efficients 
only slightly different from those of the true Pad( approximation. 

For the purist, Figure VII-IS gives a circuit for an exact Pade approxi­
mation with no loading error. Every cup on the servo "sees" a "gain 2" 
load. Note, however, that the circuit uses 3 more amplifiers and two 
additional pots. 

The "gain 2 inverters" in Figure VII-IS will not overload even if the 
preceding servo cups are set to a coefficient of unity, since the 
preceding integrators are scaled at less than 50% of reference. 

Note that each fourth-order circuit uses five mUltiplying cups. If fewer 
than five multiplying cups per servo are available, then it is necessary 
to use two servos or a lower-order approximation. 

( _<1~1 J 

~ +IOO'k = +IOO/T 

/ 

Figure VII-14. Recommended Circuit for Variable Delay Time 

Loading Correction should be as follows: 

Load the "B" cup with two additional "Gain 1" resistors. 
Load the "E" cup ",ith one additional "Gain 1" resistor. 
Load the Follow-up cup with four "Gain 1" resistors. 

X T 

All cups except the C and D cups will be correctly loaded. Loading errors 
on the C and D cups will be small and will not affect the response greatly. 
If "gain 5" input resistors are not available on a particular computer, 
two "gain 10" resistors in series may be used. 
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> +100 "lL = tOOIT 

Figure VII-IS. Circuit for obtaining a variable 
delay time without loading error. The follow-up 
cup should be loaded with two gain-one resistors. 

-x (t) 

The circuits in Figures VII-14 and VII-IS include the liT factor before 
the integrators. If the delay time, T, is fixed, it makes no difference, 
theoretically, whether the liT factor appears before the integrator or 
after it, and only scaling convenience makes it desirable to put the liT 
factors in front. If the input is scaled low enough so that no overloads 
occur, the outputs will be the same regardless of the location of the pots. 
For time-varying delays, this is ~~. 

Consider the circuit of Figures VII-16 and VII-17. 

VOUT ;-------:[I:> __ --~<=)~-V--OU-T-

Figure VII-16 Figure VII-17 
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In the first case 

Vout = -J T~t) [X(t) + y(t~ dt (9) 

In the second case 

Vout = - T(!)J lX(t) + y(t)] dt (10) 

If T is constant, it may be brought out from under the integral sign, and 
the two circuits are, therefore, equivalent. If T is a function of t, 
the two are clearly not equivalent. It is, therefore, very important 
where the time-dependent coefficients are placed. 

In order to decide which of the above arrangements is correct, consider 
the typical case of fluid flow through a pipe. If the fluid is assumed 
incompressible, then the flow velocity is the same throughout the pipe, 
and if the pumping rate is varied, the flow velocity will be a continuous 
function of time. The variable to be delayed is the temperature of the 
input stream, or the concentration of dissolved solids it contains, etc., 
and will also be a function of time. 

If the liT factor, (V/L), is put before each integrator, then a change in 
flow velocity speed~ up the integration rate of every integrator in the 
system proportionately. This changes the rate at which the signal flows 
throughout the entire circuit. Thisfuanalogous to changing the flow velocity 
throughout the pipe. 

If a circuit analogous to VII-12 is used, with the flow velocity factors 
after the integrators, some integrator inputs will change as the flow 
velocity changes and some will not. Some integrators will have ~ input 
that contains the flow velocity factor, liT, and two that do not. Instead 
of simply increasing its integration rate in response to an increase in 
flow velocity, the integrator will actually be adding and integrating 
these inputs with different coefficients. The result is a distortion of 
the input signal -- a distortion depending on the rate of increase or decrease 
in flow velocity. This distortion is in addition 1£ any distortion caused 
~ ~ Pade approximation itself. If the pots proportional to flow 
velocity are put before the integrators, then there will be no such additional 
distortion. In this case, if the Pad: approximation is adequate for the 
given input signal and the longest delay time (slowest velocity) is involved, 
the circuit ,~ll be adequate for varying flow velocity. 

J. Deriving Circuit Diagrams for the Pad~ Approximation 

A Pade' approximation for any order may be derived by writing 

ao + a l x + + amx
m 

P (m, n, x) = -b---+-b-----+----+-b-x-,n~ 
o 1 x n 

(11) 

where m is the degree of the polynomial in the numerator, and n the degree 
of the polynomial in the denominator, t1e must have m < n for a stable 
transfer function. 
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Dividing the numerator by the denominator gives a power series in x that 
should match as many terms of the power series for the exponential function 
as possible. The coefficients a. and b. are determined by this criterion. 

l l 

Since there are 'n + 1 coefficients in the denominator and m+l in the 
numerator, there are m + n+2 coefficients to be determined. One of these 
may be fixed arbitrarily (for instance, we may divide the numerator and 
denominator by b , obtaining a new transfer function in which b = 1). 

n n 
The remaining m + n + 1 coefficients can be chosen so that the first m + n + 1 
terms in the quotient agree with the corresponding terms in the series 
for e-

x
. This means solving m + n + 1 equations for the same number of 

unknowns. The solution is 

i m(m 12 {m - i + 12 a. (-1) 
pep 1) (p - i + 1) . I (12) 

l l. 

b. n{n 12 (n - i + 1) 
(13) = 

pep 1) (p - i + 1) • I 
l l. 

where p = m+ n. The proof is long and is omitted. 

Note that the numerator coefficients alternate in sign while those in the' 
denominator are all positive. If m = n, we have 

(14) 

and the circuit is an all-pass filter. 

This formula allows Pad{ circuits of any desired order to be programmed, 
if sufficient amplifiers are available. A single Pade circuit gives 
better response than two smaller circuits in cascade (for example, an 
eighth-order Pad6 circuit is better than two cascaded fourth-order circuits 
and uses fewer amplifiers as well, if standard analog components are used). 

The circuits for these transfer functions can be programmed using the 
general schemes on pages 14 and 15 of Reference 3. The fourth-order cir­
cuits in this chapter were programmed in this way. The first-order Pad~ 
approximation is easily recognized a~ a lead-lag and can be programmed 
as in figure 2a of Reference 3. The second-order circuit given in 
Figure VII-9 of this paper is adapted from a circuit in Reference 2. 
It uses one less amplifier than the circuit that follows from standard 
techniques. 
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CHAPTER VIII 

REPETITIVE OPERATION 

A. Introduction 

In many design studies, a large number of combinations of parameters must 
be investigated to optimize a system. Curve-fitting problems and boundary­
value problems involve many trial-and-error runs, and only the final runs--
the runs that actually match the desired curve or satisfy the boundary values-­
are of permanent interest. Such problems require trial-and-error adjustment 
of parameters and initial conditions, with the operator examining the results 
and re-adjusting parameters until the desired boundary value or optimum value 
is met. This procedure can be time-consuming if a large number of parameters 
are involved. A method of speeding up the computer and providing virtually 
instantaneous display of the solution is a great benefit in such cases. 

High-speed repetitive operation provides one answer to such needs. By greatly 
decreasing problem solution time and cycling the computer repetitively between 
the OPERATE and RESET modes, a continuous trace of the results can be displayed 
on an oscilloscope, where the effects of any parameter changes can be observed 
immediately. 

B. Rep-Op Circuitry 

To obtain a very rapid display of problem variables for purposes of parameter 
exploration, curve-fitting, etc, the speed of problem solution must be 
greatly increased so that the solution is obtained in a matter of milliseconds, 
rather than seconds. 

To alter the time-scale uniformly in a simulation, all integrator gains must 
be increased in the same proportion. This is accomplished easily by de­
creasing the magnitude of the feedback capacitor on all integrators and is 
done at the push of a button by adding a relay for capacitor selection to 
each integrator, as shown in Figure VIII-I. 

LARGE CAPACITOR 

SMALL CAPAC ITO 
• 

I TO REP-OP PUSHBUTTON 
~ ON CONTROL PANEL 

Figure VIII-I. Simple capacitor selection circuit. 
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The large capacitor in Figure VIII-l is the standard feedback capacitor 
(normally 1 or 10 microfarads) while the other is of much smaller size 
(generally 100, 500, or 1,000 times smaller). Thus, switching in the 
smaller capacitor speeds up the problem by a factor of 100, 500, or 1,000 
since the time constant, RC, of the integrator network is decreased. The 
specific factor depends, of course, on the design of the machine. 

Figure VIII-2 shows a modification of the capacitor selection circuitry 
in common use. The smaller capacitor is in the amplifier feedback path 
all the time, and the larger capacitor is switched in parallel as required. 
The total feedback capacitance with both capacitors in the circuit is the 
sum of the two values. For example, if a 1000 to 1 speed up were desired, 
~might choose a value of 0.001 ~f for the smaller capacitor and 0.999 ~f 
for the larger one. When both are switched into the circuit, the total 
feedback capacitance is 1.000 ~f. When only the smaller capacitor is in 
the circuit, the value is 0.001 ~f. This arrangement provides feedback 
around the amplifier at all times, even during switching. 

Figure VIII-2: Modified Circuitry for Capacitor Selection 

With the solution time decreased by a factor of 1000, a solution that for­
merly took 20 to 50 seconds now will require 20 to 50 milliseconds. Such 
a solution is clearly too fast for servo-driven plotters and recorders, but 
can be observed easily on a cathode-ray oscilloscope. To provide a continuous 
display of the solution which will change as parameters and initial conditions 
are changed, we must generate the solution repetitively, that is, by cycling 
the computer at high speed between the OPERATE and RESET modes. 

This is done by using a high-speed relay (ar~hopper"), as shown in Figure 
VIII-3. This high-speed relay is driven by an oscillator which cycles the 
computer between the two modes. The reader should verify from Figure VIII-3 
that when the relay is de-energized (as shown in the figure), the integrator 
is in the RESET mode and when it is energized, the integrator is in the 
OPERATE mode. By cycling all integrators back and forth between the two 
positions, the entire problem is repeatedly solved, reset and solved again, 
at a rate determined by the programmer. (Some computers use an electronic 
chopper in place of the mechanical chopper. The circuitry is slightly 
different but the principle is the same.) 

The oscillator that drives the mode control circuitry normally has two 
synchronized outputs: a square wave to drive the choppers and a sawtooth 
wave to drive the horizontal axis on the oscilloscope (Figure VIII-4). 
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Figure VIII-3: Repetitive Operation Circuitry 

The length of the OPERATE cycle is continuously adjustable by the operator, 
while the length of the RESET cycle is held fixed (controlled by the RC time 
constant of the I.C. network). The RESET cycle must be long enough to allow 
all integrators to return to their initial values. Thus, in a computer with 
an RC of one millisecond, the RESET cycle is under 10 milliseconds and the 
OPERATE cycle is adjustable between 10 and 200 milliseconds. 
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Figure VIII-4: Rep-Op Oscillator Outputs 

SAWTOOTH OUTPUT 
FOR SCO PE D ISP LAY 

MODE 
CONTROL 
OUTPUT 

It should be emphasized that all this circuitry is built into the computer. 
Generally speaking, the operator has only two controls to concern himself 
with: a pushbutton to put the computer into repetitive operation, and an 
adjustment for the OPERATE time. (This adjustment usually takes the form of 
a switch with several discrete settings, such as 20, 50, 100 and 200 milli­
seconds, and a vernier dial to bridge the gap between these values.) When 
the button is pushed, a graph of the desired variable versus time (or of one 
variable versus another) appears immediately on the face of the scope. If 
the problem conditions are changed by throwing a function switch or adjusting 
a potentiometer, the curve will appear to adjust itself instantaneously to the 
new conditions since a new curve is being generated every 20 to 200 milliseconds. 
The result is that the curve appears to shift continuously in response to a 
gradual parameter change. 

-243-



C. Programming Considerations. 

Programming a problem for repetitive operation differs very little from 
programming for ordinary "slow" or "real time" operation. In fact, the 
same problem can be run both ways, with the operator changing from "slow" 
operation to repetitive operation and back again at the touch of a button. 
The time-scale change brought about by changing capacitors is a purely me­
chanical change and is done automatically when the computer is put into repe­
titive operation. 

The programmer should choose his time-scale factor for the problem in the 
usual manner, by examining integrator gains and dividing them all by the 
proper factor, so that all pot-settings are reasonable and the solution takes 
a "reasonable" amount of time, say 20 to 100 seconds, without repetitive op­
eration. The automatic speedup for rep-op in no way affects this part of the 
programming. 

There are, however, two things that the programmer should keep in mind: 

1) If a problem is to run in repetitive operation, mechanical computing 
components, such as servo multipliers, servo resolvers, and relay comparators 
can not be used since they are too slow. 

The program should use only electronic computing components such as quarter­
square multipliers, electronic resolvers and solid-state switches which can 
function either in repetitive operation or in "slow" time. (Exception: 
certain problems can be run in repetitive operation with relay comparators. 
If the comparator throws only once or twice per OPERATE cycle and the operate 
cycle lasts 100 to 200 milliseconds, then a 1-2 millisecond relay may be fast 
enough. However, this is a "borderline" case and the relay mayor may not be 
fast enough, depending on the problem. Electronic comparators, with switching 
times in the microsecond range, are preferable if available. Servomu1tip1iers, 
incidentally, do have their uses in rep-op, as indicated below. 

2) A parameter that is to be varied in repetitive operation should, 
whenever possible, appear on only one pot as it is difficult to change two 
or more pot-settings simultaneously in rep-oPe For example, the circuit in 
Figure 111-9, in which the mass m appears on a single pot, is to be preferred 
to the circuit in Figure 111-4, in which two pots must be re-set to change the 
mass. 

In some cases, where it appears that the parameter cannot be isolated on one 
pot, ganged potentiometers may be used (potentiometers mounted on a common 
shaft, so that all turn together). If the computer is not equipped with 
ganged pots, servo multiplier cups (which, of course, are a form of ganged 
pot) may be substituted. ---

The servo may be driven directly from a hand-set pot patched to reference 
voltage. As the hand-set pot is adjusted, all servo cups will turn in response 
to vary the single parameter that appears on several pots. 

-244-



D. Readout 

As mentioned above, the oscilloscope is the main form of readout for repeti­
tive operation. Although other oscilloscopes may be used, best results are 
achieved with a unit that is built into the computer so that it is always 
available. Access to the built-in scope is by patching the appropriate 
amplifier directly into a scope-input terminal on the patchpanel; all neces­
sary cabling is internal. 

Oscilloscopes suitable for use with general-purpose analog computers have 
the following features: 

1) Multi-Channel Display. Four-channel and eight-channel units are 
available, allowing several variables to be observed simultaneously. De­
pending upon the design of the unit, the plots may be superimposed, as 
in Figure VIII-5, or "split" as in Figure VIII-6. 

2) Crossplot Feature. Since an oscilloscope is, basically, a device 
for plotting one voltage against another, it is quite easy to remove the saw 
tooth sweep from the horizontal drive terminal of the built-in scope and patch 
in an arbitrary computer voltage. Thus, the scope may be used in the same 
manner as an X-Y plotter to display plots of one variable versus another 
(Phase-plate plots, etc.) 

CONCENTRATION 
OF B 

Figure VIII-5: Superimposed Display of the variables in the 
chemical reaction A.-. B.-. C as displayed on a .multi-channel 
scope. 
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Figure VIII-6: Simultaneous "Parallel track" display of 
four variables in a mechanical problem, 
using a multi-channel scope. 

3) High Persistence. A repetition rate likely to be used in repetitive 
operation is 50 solutions per second (10 milliseconds OPERATE time followed 
by 1U milliseconds RESET time). This repetition rate is much slower than the 
repetition rate for which most laboratory-type oscilloscopes are designed. The 
relatively slow repetition rate makes a high-persistence display desirable and 
practical. A typical unit can easily be read at a distance of 10 feet or more 
in a brightly lighted room; there is no need for dimming lights, or using 
masks or shields. 

4) Accuracy of Display. Display accuracy is typically 1% or better. 

5) Reset Blanking. Most units have built-in circuitry to dim or turn 
off the electron gun while the computer is resetting, eliminating the 
"f1yback trace" that would otherwise be displayed. 

For curve fitting purposes, the empirical curve to be matched may be sketched 
on the face of the scope with a grease pencil, or a few individual data points 
may be individually marked on, using the grid lines as a guide. 

In addition to oscilloscope readout, x-y plotters and voltmeters may be used 
in conjunction with track-store units to read out certain repetitively-gener­
ated signals. 

E. Operating Procedure 

The recommended operating procedure is quite straightforward: 

1) Program in the normal fashion, as described above. 

2) After patching and static check are complete, make a run in "slow" 
time with typical parameter values and record significant variables 
on an x-y plotter. 
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3) Put the computer into rep-op and adjust the compute time as desired. 
Compare the rep-op solution with the solution produced on the plotter. 
This checks the operation of the rep-op relays and allows the operator 
to verify that the rep-op solution matches the slow speed solution. 

4) Perform the wide-range parameter exploration, curve-fitting, optimi­
zation, etc. by varying potentiometers and observing results on the 
scope. 

5) Return to "slow" time for permanent recording of specific solutions 
on the x-y plotter. 
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CHAPIER IX 

ANALOG MEMORY 

A. Introduction 

Memory, or storage -- the ability of a computer to "remember" the results of 
past computations -- is a concept more frequently associated with a digital, 
rather than an analog computer. However, the inclusion of a moderate amount 
of storage capability in an analog computer can greatly increase its problem­
solving capacity. 

At the outset, we should distinguish between point storage (the storage of a single 
number, or a few numbers) and curve storage (the storage of an entire function). 
The two are closely related -- curve storage is usually accomplished in practice 
by storing a large number of points and interpolating between them. However, the 
amount of storage required and the complex switching circuitry necessary for inter­
polation make curve storage an order of magnitude more difficult than point storage. 
This chapter will be limited to point storage. 

B. Typical Storage Applications 

Typical classes of applications for storage techniques include the following: 

1. Automatic Iteration (trial-and-error) 

Here, a problem limitation must be met such as a boundary-value, or end-value, 
or a maximum or minimum condition. If the computer is to perform the trial-and­
error computations automatically, it is necessary to provide the computer with 
some method of "remembering" the results of previous computations. 

2. Parameter Sweep 

As another example of a storage application, consider the effect of an adjustable 
parameter a on an analog computer solution. For example, one may want to study 
the steady-state error of a position servo as a function of controller gain or 
some other control parameter. On the other hand one may be interested in the 
miss distance of a missile as a function of initial launching error. In either 
case, one is interested in a single number, X, (steady-state error, miss distance, 
etc.) which is computed during an OPERATE cycle using a particular value of some 
parameter, 0, -(contro ller gain, launching error, etc.). A value of ° is chosen 
at the beginning of the OPERATE cycle, and the corresponding value of X is com­
puted. Usually X will be a final value, i.e o the output of some component at the 
end of the OPERATE cycle. It is desired to obtain a plot of X versus a. 

Obtaining such a plot manually would be quite time consuming. The operator would 
have to choose several values of 0, change pots manually between runs, and tabulate 
the result, X, after each run. He could then make a point-plot of X versus a and 
connect the points by a smooth curve. The procedure outlined below replaces this 
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tedious work with a single computer run in which the desired graph is produced 
automatically on an X-Y plotter. The necessary circuit is described in section C. 

3. Multi-Speed Computation 

In the parameter-sweep examples, the high-speed circuit behaves very much as a 
function generator, acceptin~ one or more slowly-varying inputs while producing 
a stair-step output which approximates a continuous function of the inputs. 
These function-generation problems are characterized by the fact that an entire 
computer ~ is necessary to produce ~value of the function. If an entire 
curve~ or family of curves, is desired, many runs must be made, and this is very 
time-consuming unless the Tun:::; ClTG. m:?,de et high speedM 
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There is no reason hO''i'lever, Hhy the use of th~s fun:; tion generation technique 
must be limited to simple plotting. It may also be used Hhen the function is 
needed as part of a dynamic simulation in which the inputs to the high-speed rep­
op circuit (the low-speed variables) are being generated by solving a low-speed 
system of differential equations. In this case, the rep-op circuit plays the 
same role as any function generator in a dynamic simulation: it accepts varying 
inputs and produces one or more of the output variables which are a necessary 
part of the dynamic loop. 

Since an entire differential equation must be solved to obtain a single function 
value, the high-speed circuit is capable of solving problems that can not be 
solved easily by any other function generation technique. On the other hand, it 
may be possible to solve the high-speed equations analytically and, thus, replace 
the high-speed circuit with conventional function - generators to implement the 
analytical solution. In this case, the high-speed circuit may be considered 
simple as a substitute for a conventional function generator. Examples of both 
cases are given below in section D. 

s. Storage Circuits 

Since an analog signal is a voltage, it may be stored by using it to charge a 
capacitor. Readout of the stored information must take place without drawing 
appreciable current from the capacitor since drawing current would partially 
discharge the capacitor, and result in an erroneous reading. This requirement 
for "nondestructive readout" implies that the use of an amplifier will be 
necessary. 

1. Simple Track/Store Unit 

A simple track-store unit is shown in Figure IX-I. It may be readily assembled 
using an amplifier, its resistor network and a relay comparator. Alternatively, 
an integrator IC network may be used. Many computers contain packaged track/ 
store units with a capacitor, an amplifier and a built-in electronic switch. 
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VIN R 

Figure IX-I: Simple Track-Store Circuit 

When the relay is closed, the amplifier is essentially a gain-one inverter with 
a short lag due to the capacitor. The transfer function is -1 The 

t + ReS 
time constant can be kept short by choosing low values for the resistors and 
capacitor. When the relay is opened, the circuit behaves like an integrator in 
the HOLD mode: it ·stores the last value it had when the relay opened. 

R R 

VOUT 

Figure IX-2: Improved Track-Store Circuit 
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2. Improved Track-Store Unit 

Figure IX-2 shows a modified version of the track-store circuit. Grounding the 
capacitor by means of another set of contacts on the same relav shortens the 
tracking time constant which is now R'C, instead of RC. It is practical to make 
R' much smaller than R without loading the circuit excessively. Of course, C 
should be small in both circuits. If several input resistors are used, the unit 
can track and store the sum of several voltages without the need for an additional 
sunnner. 

Modern track-store units use the switching scheme of Figure IX-2, except that 
the mechanical relays are replaced with solid-state switches. Both the RC time 
constant and the switching time are in the microsecond range. Many computers 
use this type of circuit for the initial condition networks of integrators as 
well, since it is inherently faster than the circuit in Figure IX-I. 

A programmer's symbol for a track-store unit is shown in Figure IX-3. The logic 
input signal controls the switching between the track and store modes. The unit 
tracks when the logic input level is high and stores when it is low. 

LOGIC INPUT 

ANALOG 
INPUTS --~~r--------

Figure IX-3. Progrannner's Symbol for Track/Store Unit. 

3. ''Bucket Brigade" 

Certain combinations of track-store circuits occur frequently. Figure IX-4 shows 
a circuit for storing the final values of a computer variable during high-speed 
repetitive or iterative operation. It is assumed that the computer is being 
cycled automatically between the RESET and OPERATE modes. The logic input signal 
driving the track-store units is generally supplied by the same square-wave 
source which provides the mode-control signals, but is may also be supplied by an 
electronic comparator. 

LOGIC INPUT r ~ LOGICAL 

PROBLEM ~ ~\ STORED FINAL VALUE 
--__ -;L Tis ------] Tis >~----------

VARIABLE OF X (t) 

INVERTER 

)( (t) I\~APLIFIER AP,QPLIFIER 
:)tl ;f:;!:2 

Figure IX-4. "Bucket Brigade" Circuit 
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Table IX-1 indicates the sequence of events. Amplifier #1 tracks the problem 
variable while it is being generated in the OPERATE mode. Then, when the computer 
is reset, the logic input level changes from 1 to 0, and amplifier if1 stores this 
value and passes it along to amplifier #2. Because of the way in which informat­
ion is "passed along" this is sometimes referred to as a "bucket brigade" circuit. 
When the computer is switched back to the OPERATE mode, amplifier #1 starts track­
ing the variable again while amplifier #2 stores the final value from the preced­
ing run. If the rep-op circuitry has provided for a HOLD mode to follow the 
OPERATE mode, amplifier #1 can be eliminated, and amplifier #2 can pick up its 
new value while the problem is in the HOLD mode. 

Table IX-I: Sequence of events in "bucket brigade" circuits. 

Logic Computer Behavior of Behavior of 
Input Mode Amplifier 1 Amplifier 2 

0 RST stores (output =0) tracks (output = 0) 

1 OPR tracks -X I 
stores (output is still 

0 RST stores -Xl (final 
value) 

tracks Xl (final value) 

I OPR tracks -X 2 
stores Xl (final value) 

0 RST stores -X2 (final 
value) 

tracks X2 (final value) 

I OPR tracks -X3 stores X2 (final value) 

The subscripts refer to the successive runs (thus X is generated during the nth 
run) • 

n 

4. Analog Accumulator 

By adding a feedback connection to a bucket brigade circuit, an analog accumulator 
is obtained (Figure IX-5). The output, x, changes by an amount, ~ x, each time 
the logic input changes from 0 to 1 and back again. The value, ~ x, need not be 
constant. 

LOGIC INPUT 

LOGICAL INVERTER 

Figure IX-5: Accumulator Circuit. 
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I C OR 

PARAMETER 

D. Examples 

MODE CONTROL SIGNAL 

1 = OPERATE; 

ANALOG 
EQUATIONS 

(REP-OP) 

o = RESET 

PROBLEM 

VARIABLE 

DESIRED 
~FINAL 

VALUE 

-REFERENCE 

Figure IX-6. Iterative Solution Circuit 

1. Iterative Solution to Boundary-Value Problems 

K 

E 

Figure IX-6 shows a general scheme for matching a boundary value by automatic 
iteration. The problem variable is compared with the desired final value, and 
the resulting error, € , is stored at the end of the run by a "bucket brigade ll

• 

This error is applied to an accumulator in the RESET mode to provide a correction 
proportional to the error. Thus, large corrections are made for large errors and 
small corrections for small errors. If due attention is paid to the sign,so that 
the correction is made in the right direction, the iteration will usually converge. 
If excessive overshoots occur, the gain, K, should be reduced. 

2. Parameter Sweep Circuit 

A general scheme for parameter-sweep plotting is shown in Figure IX-7. The system 
of differential equations is run in rep-op, and the parameter or initial condition 
is fed into the system via a slow-speed (non-repetitive) integrator. The integtator 
sweeps the parameter slowly through its range of values and,if the sweep rate is 
low enough, the value ofe( may be considered to be approximately constant through­
out the run. The final value of X, which is to be plotted versus a, is tracked 
and stored by a "bucket brigade" circuit resulting in a new final value after 
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every run. The output plot is a "staircase" approximation to the desired smooth 
curve (Figure IX-8). However, if we vary the parameter over the desired range 
in 50 seconds and the rep-op rate is 20 solutions per second, then 1000 solutions 
'viII be generated at this time. The plot will then consist of 1000 tiny steps, 
so small as to be barely noticeable. 

A trivial special case occurs when the parameter, a, is simply the elapsed time 
for the computer run. The result will then simply be a plot of X versus time, 
which is exactly what would be obtained by direct plotting without rep-op or 
track-store units. 

TO ARM OF 

X-V PLOTTER 
REP-OP MODE CONTROL SIGNAL 

(PARAMETER) 

SYSTEM OF 
DIFFERENTIAL 

EQUATIONS 

X(t) 

Figure IX-7: Parameter Sweep Unit 

FINAL VALUE TRUE PLOT OF X us a 

ACTUAL PLOTTER 
OUTPUT 

TO PEN 

OF x-y 
PLOTTER 

PARAMETER a 

Figure IX-8: Typical Plot produced by Parameter Sweep Circuit 
(Step size exaggerated for clarity) 
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PROPELLER 
BLADE~ f3 

HINGE---:> ___ -1 -

PROPELLER 
SHAFT ----C> 

(ANGULAR 

VELOCITY W) 

Figure IX-9: Basic Geometry of Hinged Propeller. 

3. Applications of Multi-Speed Operation 

a. A Helicopter Design Problem -- In one type of helicopter design, the 
propeller is connected by a hinge to the vertical driveshaft (Figure IX-9). 
When the shaft is not rotating, the blade hangs vertically. As the shaft rotates, 
centrifugal force makes the blades stand outward, so that at full speed they will 
be in a horizontal position. The determination of the angle, ~ , which the blade 
makes with the horizontal is crucial to the study of the stability and control 
of the craft. This angle will vary with time in a manner determined by the 
centrifugal force and the aerodynamic torque on the blade. (Note that ~ $ 0) 
if the aerodynamic torque is zero.) 
The basic dynamic equation is 

I f3 o 
(1) 

where 10 is the moment of inertia of the blade about hinge and T is the total aero­
dynamic torque on the blade. The need for two-speed computation comes from the 
fact that the total torque on the blade must be determined by integration. 

If the distance along the blade, measured from the hinge, is called x, then the 
tor~ue on the short length between x and x +dx is a function of x, and also of 
~,~ , and the centrifugal forcing function (sin Wt) 

dT = f (x, f3 ,~ , sin w t) dx (2) 

The total torque is obtained by combining the torques on each individual section: 

L 

T J f(x, f3 , f3, sin Wt) 
o 

• 
dx = F ( f3, ~ sin Wt) (3) 
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Figure IX-lO: Two Speed Circuit for Solving Helicopter Blade Problem 
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Since the integrand is a complicated function of all four variables, and involves 
empirically measured aerodynamic co-efficients, it is impossible to perform this 
integration analytically. It is, of course, a simple matter to perform the inte­
gration on the computero The computer time is made proportional to the distance 
x along the rod, and the length of the OPERATE cycle is proportional to the length 
of the propeller blade. A single OPERATE cycle gives the torque for ~ set of 
values for ~, ~, and sin wt. What is needed is a continuous function of these 
variables as they change in response to the main dynamic equation for~. Here is 
where two-speed operation comes in. 

The circuit is shown in Figure IX-lO. All integrators within the dotted lines 
(and both track-store units) are running in high-speed repetitive operation; the 
main problem is run in "slow" time. 

The high-speed rep-op circuit receives t3 , - ~ and sin w t as input variables 
from the main program, and generates the integrand (the torque-per-unit-length) 
by means of multipliers, DFG's, etc. This is integrated by a rep-op integrator, 
8, over a very short time interval (e.g. 20 milliseconds), with the rep-op time 
scale chosen so that this corresponds to integration over the interval a ~ x ~ L. 
At the end of the rep-op cycle, the output voltage of integrator 8 is proportional 
to the total torque. Amplifier 9 stores this value during the RESET cycle, and 
passes it on to amplifier 10. At the beginning of the next OPERATE cycle, the rep­
op circuit repeats the process with slightly different values of the input 
variables from the main program. If the rep-op rate is fast enough, the values 
of these variables will not change very much from one rep-op run to the next, 
and the input variables may be considered essentially as constant for any given 
run. 

From the point of view of the main program, the rep-op circuit appears as a 
function generator or subroutine, generating a complicated function of its three 
input variables. 

b. A Multi-speed resolver -- As another example of multi-speed operation, 
consider the problem of polar-to-rectangular conversion. A polar-to-rectangular 
resolver accepts input voltages proportional to Rand 9 and produces outputs 
proportional to X and ~ where 

X = R cos 9 (4) 

Y = R sing (5) 

These equations may be mechanized with DFG's and quarter-square multipliers, as 
shown in Figure IX-II. This is the circuit used in conventional electronic 
resolvers. It used 9 amplifiers, two mUltipliers and two DFG's. The range of 
the input angle, 9 , is generally limited to +1800 , although some models are 
designed for a range of ±3600 • -
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8 X= Rease 

Y=RSIN8 

Figure IX-ll: Conventional Circuitry for Polar-to-Rectangular Conversion. 

The same outputs can be produced by a two-speed circuit with less equipment and 
without limiting 8 to ±180o • The circuit is based on the solution (in rep-op) 
of the equations 

u = wV 
where W isa conveniently chosen constant 

v = -wu 

(6) 

(7) 

with the Ie's U (0) = R; V(O) =0. The equations may be solved analytically 
to obtain 

U = R cos ill t 

v = R sin ill t 

(8) 

(9) 

where t is time in the rep-op system. If the variables U and V are sampled by 
comparator-controlled track-store units at time t = 8/w (i.e.,when w t = 8 ), 
the values will be R cos 8 and R sin 8. The circuit is given in Figure IX-12. 
All integrators in the circuit are operating in high-speed rep-op •. The variable, 
9 , (an input into the system from the slow-speed part of the problem) is compared 
with the high-speed ramp, ill t. When 8 = w t, an electronic comparator generates 
a logic signal which causes the outputs of the high-speed oscillator to be held 
in the track-store units. The usual arrangement of cascaded track-store units 
(bucket brigade) provides a stair-step output. Note the fact that no multipliers 
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8 

-R 

are needed to produce the products R cos 9 and R si.n 9. The variable Renters 
into the high-speed system as an IC on the oscillator. 

The mUlti-speed circuit uses only eight amplifiers (counting those in the track/ 
store units), one comparator and four track-store units. The four track-store 
units can be reduced to two if the rep-op integrators have a HOLD mode capability. 
The value of 9 is not restricted to ±1800 • As it stands, the circuit works only 
forpositive values of 9. However, it may be modified easily by adding an IC 
to the high- speed ramp integrator so that its output is ill t - 0, where 0 is 
determined by the maximum expected negative value of 9. For simplicity, it is 
easiest to make 0 . a mUltiple of 3600 • 

x = Rcos e 

-REF 

+v 

Figure IX-12: Two Speed Circuit for Polar-to-Rectangular Conversion. 
Inputs Rand a amd Outputs x and Yare slow-speed 
variables. All others are rep-op variables. 
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CHAPTER X 

PROBLEM PREPARATION PROCEDURE 

A. Introduction 

The ability to solve physical problems on an analog computer is gained only 
with practice. However, iess individual ability is required for an applications 
engineer to achieve competence in the art of solving problems on analog computers 

when he has a definite procedure to fo.llow rather than when 
he has the added task of deciding separately the steps he should take. This 
does not imply that any single set of rules can hold for all problems, nor that 
when two engineers follow a given procedure on a problem they will arrive at the 
same set-up. It does imply, however, that their chances of obtaining the same 
solutions are improved and that the time taken to produce a solution is reduced. 

The procedure that follows is recommended as a guide to the systematic preparation 
of problems for solution to insure that all information important to a problem 
will be at hand immediately through all phases of the problem. The standardization 
involved is especially valuable when the work of a problem is to be shared among 
several members of the staff, or when the problem must be transferred from one 
engineer to another. 

The procedure should be regarded rather as a general guide to logical problem 
organization than as an inflexible set of rules to be followed in every case. 
On the basis of extensive experience gained at the EAI Computation Centers, 
it is suggested that where part of this procedure does apply to a problem, then 
it should be used intelligently. Time spent in preparation is usually more 
than balanced by the resultant saving in time on the computer. 

B. Statement of the Problem in the Original Form 

When a physical problem is under consideration, some effort should be given to 
making a precise statement of the problem. This statement should assemble in 
one place, all the information which describes the problem in its original form. 
It should be so organized that a complete understanding of the problem can be 
grasped easily by anyone reading it. Apart from the description, it also should 
contain all the basic data. required for the solution of the problem, and the 
general or specific obj~ctives to be attained. As the most concise form, an 
attempt should be made to include a description of the physical system in terms 
of mathematical equations, relating those dependent variables whoEe values 
determine the state of the system. These equations should be as complete as 
possible. Approximations may be made at a later point in the study but, once 
omitted at this early stage, an influence on the system is unlikely to be 
reconsidered. Care must be exercised so that redundancy is not included in 
the description e.g., using too many variables or writing equations with too 
many degrees of freedom (too high an order) can lead to trouble in computation. 
The available data which determines the pecularities of ,the particular system 
of interest must be reviewed to discover its character. The source and form 
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of the data is important in determining its accuracy and reliability. Much 
can depend on the confidence one places in this input to the study at hand. 
Having reviewed the form of the problem, pinned down the objectives and 
determined the method of solution, one then can decide the form of computation 
necessary. Possibly a slide rule or a desk calculator is sufficient for the 
purpose. On the other hand the method of problem solving obviously may be 
suited to an analog computer. If the problem is arithmetical by nature (an 
inventory or accounting problem) or requires accuracy greater than 1/1000, the 
use of a digital computer is suggested. With a little experience and common 
sense, there is usually little difficulty in deciding which computer should be 
used. 
From thjs point onward, we will assume that the problem is to be solved using 
~n analog cQmputer. 

C. Preliminary Problem Investigation 

With all the background material available, the next step is to treat the 
problem as an analog computer ta.sk. After changing the variables or modifying 
the mathematical model to facilitate programming (such as, transforming a 
partial differential equation into a set of ordinary differential equations by 
using finite difference approximations for the derivatives with respect to all 
but one of the independent variable~;, the original equations should be written 
as: 

1) First and second order differential equations which are solved for 
the highest derivative, and/or transfer function. 

2) Open loop algebraic equations. 
3) Implicit equations 
4) Closed loop algebraic equations, if unavoidable 
5) Logical conditions (relay comparator arrangements). 

At this time, a mathematical block or flow diagram of the problem should be 
drawn. The purpose of this preliminary computer diagram is to show all the 
major computing components, and to determine if all necessary inputs and data 
are available to solve the problem. This diagram should contain all integrators, 
multipliers, resolvers, function generators, comparators and their interconnections. 
It should ignore scale factors, signs, gains and element number designation. 

From the preliminary diagram, an estimate of the equipment required can be 
obtained for comparison with the available computing equipment. If insufficient 
equipment is available, simplifications of the original equations may be 
necessary. At this stage, answers should be provided for all questions which 
could be raised as to the specific methods to be used. Do any difficult 
problem areas exist, such as closed algebraic loops, etc., and how will they 
be handled? Are approximations and simplifications required to stay within· 
the size of the installation, and if so, what should they be? What 
magnitude of error is to be expected in the solution and is this acceptable? 
What kind of recordings are to be taken? How much equipment will be required? 
What scheduling should be done? At this point in the problem investigation, it 
is advisable to begin planning the future use of the computer. If an "open 
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shop" operation of the computing facility is the practice within an 
organization, it is well to tell the computa.tion laboratory ma.nager when 
you expect to be ready to use the computer. Do not underestimate the work 
still to be done in the preparation. Allow plenty of time, but do prepare 
the l~boratory for your requirements with respect to the expected size of 
computer necessary, the output devices you wish to use and when you will be 
ready to use the equipment. 

D. Analog Computer Equations 

With the equations describing the problem adapted to a form suitable for 
computer solution, they now must be written so that no signal voltage on the 
computer, representing a physical variable or quantity in the problem, can 
exceed the limitations of the computer equipment. This phase of the preparation 
should contain all the manipulations required to arrive at the "scaled" set of 
~quations which actually will be solved on the computer. 

In writing the original different~al equations, it is recommended that the 
following rules be observed: 

1) All constant coefficients or parameters that will be varied 
at some stage in the study should be indicated. 

2) All constants should be defined as positive, so that their 
signs become explicit. 

3) If a constant will change sign during a study, it should be 
mechanized with appropriate switching circuitry. 

In addition, a complete list of coefficients with their units and ranges should 
be made up as well as a list of all initial conditions. 

1. Scale Factors 
In selecting scale factors, one should: 

a) Identify, on the flow diagram, which variables and 
expressions require scaling, and list them. This 
list should include all variables appearing as 
amplifier outputs, along with the sign of th~ 
variables. 

b) Evaluate the ranges and maximum values of all 
listed quantities. 

Scaling is generally based on: 

a) Knowledge of the physical system under investigation. 
This alone is sufficient to determine scaling in 
most practical problems. 

b) Consideration of the original equations. (Steady­
state relations, time constants and characteristic 
frequencies help to evaluate the ranges of variables 
for the initial conditions, (and inputs). 

e) Trial and error on the computer. It is often possible 
to run a simplified version of the computer program to 
determine a scale factor. 
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When a variable has either a positive or negative range, variable substitutions 
should be made to increase the accuracy of the computation. (e.g. 600 S T S 700 
could be replaced by a new variable Tl = T - 650.) 

The computer variables should be tabulated and should include: 

a) the physical variables and their units 
b) the estimated maximum values or ranges 
c) the scale factors (l/rnaximum value) 
d) the computer variables (scale factor x physical variable) in machine units 

2. Scaled Voltage Equations 

These scale factors, together with those factors inherent in the computer 
components performing certain mathematical operations (e.g. multiplication), should 
be written into the original equations. To obtain scaled equations, 
it i3 suggested that the notation used in the original equations be maintained 
and that the equations be manipulated. as illustrated in Chapter III. 

Potentiometer settings and ranges, and amplifier input gains now can be computed 
from the tabulated parametric data. 

Thought sh«mld be given also to Itt irne scaling" in order that the dynamic response 
of the computer elements will not be exceeded. However, it is not recommended 
that this type of scaling be included in the equations. Simply change the 
gain of all integrators by a factor , l/~, in order to achieve a change in time­
scale of~. The output of any external equipment being used in conjunction 
with the computer also must be adjusted. In the case when passive element 
networks are used, the values of the time constants also must be multiplied by ~. 
In fact, all time constants must be changed by the same factor, ~. 

For many problems, large gains or very small attenuator settings often will be 
required. If these are made to occur at the inputs of integrators, inclusion 
of the factor, l/~, at each and every input of the integrators often will 
remove most difficulties. This will also result in frequencies for the computer 
model which are suitable for computer operation (0.1 - 10 rad/sec), ensuring 
problem solution on the computer in a time convenient for interpretation (10-60 
seconds). 

3. Time Scaling Considerations 

If all integrator input potentiometer settings are small or input gains 
are high, the selection of the proper time scale factor is obvious. If the time­
constant-ratio (highest to lowest) of the equations is larger than 103, however, 
a difficulty exists since no matter what time scale factor, ~, is selected, 
some equations will be "too slow" and others will be "too fast". 

If a problem is made up of equations that can be divided into fast and slow 
groups, with a large gap in time constants in between, it can be split as 
follows: 
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a) Fast problem -- Ccnsider all the outputs of the slow 
integrators as constants (equal to the initial conditions 
of these variables). You are left with a problem in the 
fast equations only and its solution tells you in what 
manner the fast variables change .from their initial 
conditions into the steady-state solution for given 
constant values of the slow variables (the "initial 
jump" of the full problem). 

This problem is much smaller than the original problem, 
and the range of its time constants is reasonable. 

b) Slow problem -- Assmne that the fast equa.tions are 
always in equilibrium. This implies that all fast­
variable-derivatives are zero and, therefore, the 
equations become algebraic, For example, if 

and T is small, we can substitute x = y, 

eliminating a variable and an equation. 

The slow problem solution closely approximates the full 
problem solution from the point where the latter starts 
with the "steady state" initial conditions of the fast 
variables reached after the "initial jump". 

c) Stability If either the fast or slow problem alone 
is unstable, the full problem is unstable. If we have kept 
a few fast differential equations but not all of them, 
the "half-slow" problem may be unstable while the full 
problem is stable. If slow and fast problems are both 
stable, the full problem is generally stable for sure if the gap 
in time constants is large enough. 

If the problem cannot be split, we will have to program 
very large and very small machine time constants. An 
optimum mechanization can be obtained if the standard 
feedback capacitors of the integrators are replaced by 
capacitors whose magnitudes result in accurate integrator 
input potentiometer settings. 

This phase completes any mathematical manipulations required 
to obtain solutions. 

E. Analog Computer Circuit Diagram 

A computer circuit diagram can be produced directly from the scaled equations. 
This will follow the lines of the data flow diagram but will also include all 
the detailed information with regard to components. The standard symbols for 
computer diagrams should be used, and voltages at all points in the diagram 
should be indicated. The diagram should be drawn on such a material that it 
can be reproduced easily, and the master copy should be retained in the problem 
file for reference. 
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One should select a definite address for each element of the computer 
diagram in a way that minimizes patch-panel clutter. If interchangeable 
units are used, make a list of which units should be inserted in which 
slots and issue this as an instruction to technicians. These instructions 
should also request routine maintenance testing of any unit that is going 
to be used, which has not been checked for a long period of time. Also, 
construction of any special elements that may be needed should be requested. 

If several machines are used, allocate the elements to minimize trunk 
connections so that physically-significant partial systems can be set-up 
on each patch-panel. If several patch-panels are used, as well as several 
sheets for the diagram,one should attempt, as far as possible, to have all 
elements on a given sheet allocated to the same patch-panel. 

Select, for each pot, the input gain of the amplifier(s) to which it is 
connected, e.g., 1 or 10, or parallel combinations like 20, 2, etc. 

This allocation is made amplifier by amplifier. If it is found that the 
number of inputs on some amplifiers is not sufficient, proceed as follows: 

1) Precision resistors from passive element groups can be patched 
to the summing junction for extra inputs. 

2) A summing amplifier, not used otherwise, can have its input 
network paralleled with that of another summing or combination 
amplifier. 

The amplifier which has lost its input network still can be used as an inverter 
by patching a precision resistor directly to its grid. It also can be used as 
a two-input high gain .amplifier by using the feed-back resistor as an input 
resistor. The grid must then be grounded by a patchcord during pot setting 
since there is no pot set relay. It is often practical to compromise in gain 
allocation by using a gain of 10 where an extra gain of 1 is needed, unless 
the drop in relative accuracy of the pot-setting (which becomes 10 times smaller) 
cannot be tolerated. As to which setting should be modified, it should be either 
the highest (among coefficients < 1) for adequate accuracy, or the lowest as the 
term represented by this setting is known to be quasi-negligible anyway. 
In general, one should apply common sense in constructing a circuit diagr~, and 
attempt to utilize the equipment efficiently,anticipating mechanization problems. 

Typical illustrations include: 

1) Programming a potentiometer in the numerator of a division 
circuit which may overload 

2) Distribution of loop gains where possible 
3) The isolation of parametric variables. 

With the computer circuit diagram complete, the following lists should be 
prepared, indicating the purpose of each component and the signal voltages or 
settings involved: 
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1) Potentiometer sheets 
2) Amplifier sheets 
3) Multiplier sheets 
4) Resolver sheets 
5) Function generator sheets 
6) Recorder sheets 
7) Trunks and external connections 
8) Special circuit description 

Examples of these sheets are shown in Figures X-I, X-2, X-3, and X-4. 

Potentiometer assignments sheets normally contain: 

and 

1) the address of the individual potentiometers 
2) the parameter description or what parameters are 

represented by the potentiometer 

3) precalculated settings for both the static check and 
operating runs. 

Amplifier assignment sheets contain the address and feedback of the individual 
amplifiers, in addition to: 

and 

1) a description of the vaT'iables or functions appearing at the 
amplifier outputs. 

2) precalculated static check amplifier output voltages 

3) precalculated integrator check point or derivative voltages. 

If the feedbacK resistor of the check amplifier used to validate (3) is not 
explicit, it should be defined on the amplifier assignment sheet to prevent 
confusion. Since diode function generators are slope limited, prov~s~on 
is made on their set-up sheets for computing the slope of each segment and 
the change in slopesbetween segments. Frequently, the various segments of 
variable breakpoint DFG's will have different maximum slopes and tabulations 
of this type will aid in matching function slopes to their corresponding DFG 
segments. 

Now that the final diagram is available, the boards reserved for the problem can 
be patched. The diagram must show all informa.tion-necessary for patching, other­
wise it cannot be considered complete. 

Using a copy of the diagram, mark connections in red pencil or ink as they are 
patched, and proceed in a systematic way from one corner of the diagram to the 
other to minimize the chances of missing a connection. 

In the end, all connections should stand out in red. However, it is not 
easy to check on the basis of connections a.lone, since a short line from a pot 
to an amplifier easily can be overlooked. The best check is to go over all 
elements on the diagram and see if their inputs have been marked. This is 
necessary and sufficient. 
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In the same way, the patching itself can be double-checked. After the "inputs" 
check, the outputs of each element should be counted to make sure that no extra 
connections have been made. 

The larger the distance between two patching terminations, the greater the length 
that should be left in the connection. This leads to the following pattern 

which makes checking and modification easier later on. 

After patching has been completed, the underside of the patch panel should be 
checked to determine if all leads have been completely inserted into their patching 
terminat ions. 

F. Static Check Preparations 

The static check, which is illustrated in Chapter III, is a procedure ensuring 
that the problem set on the machine corresponds to the original equations. It 
shows up errors that may have occured in: 

1) derivation of scaled equations from original equations. 
2) computation of pot settings 
3) drawing of the computer diagram. 
4) patching. 
5) actual setting of potentiometers. 
6) opera.tion of machine elements. (blown fuses, wrong servo gain 

settings, defective amplifiers, etc ... ). 

Most problems are set-up in order to investigate solutions for different 
combinations of parameters, in which lies one of the main advantages of analog 
computation. For the purpose of checking, one set of parameters is selected. 
If sets with different degrees of complexity occur, (with one simple one implying 
that several coefficients are equal to zero), the set selected as basic for 
the check should be representative of the most complex case where all coefficients 
are different from zero. The choice of an arbitrary set of static check 
variables is guided by the following considerations: 

1) When compatible with the other requirements that follow, the 
check values should be chosen equal to the initial conditions 
for the first or basic run. 

2) The check values should give reasonable voltages after scaling, 
say from 10 to 90% of reference. 

3) Intermediate quantities which had to be scaled (the result of a 
division, for instance) must be within the scaling range. 
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4) No check values should be zero since parts of the circuit thus 
would not be checked at all. 

5) The voltages corresponding to the scaled values of the problem 
variables should all be different in magnitude to detect patching 
errors. 

6) Constant values for all external inputs (signal generators, etc.) 
should be chosen. 

7) In case of a dead-band simulation, the static check values 
should be chosen to fall outside of this dead-band. 

If no complex high-gain equations or other algebraic loops are present, the 
computation of check points is straightforward and should be carried out by 
means of a desk computer. Generally, four significant figures should be retained. 
This numerical work should be written clearly so that the values found for 
intermediate expressions and for the different terms in sums can be identified 
easily. Results should be entered on the amplifier assignment sheets. 

1. Computer Preparations -- Make sure that the proper units are inserted 
where required; also, connect pot-padder cables and calibrate recorders and 
plotters. 

Set-up all DFG's and pot-padders, using blank patch-panels. Remember that the 
output of a tapped pot should not be loaded during set-up since the load is 
already simulated by the load selector switch circuitry. 

After setting, record functions on a plotter, taking the input from a time base 
integrator. Note that during checking, tapped cups are loaded (by an amplifier 
input) as in the problem. Check the recorder curves and file them for 
reference. 

2. Operational Procedure -- The operational procedure to be followed, once 
the computer is checked out and solutions are available, should be detailed as 
far as possible before one moves to the computer. There should be a plan of 
campaign so that the data gathering period on the computer is as efficient as 
possible. This plan should include a run schedule with changes in potentiometer 
settings listed, the type of recording required, the expected results (if any) 
and any instructions needed in the operating period. 

This completes the preparation stage of the problem, and the patch panels now can 
be prepared for insertion into the computer. With this achieved, work may 
begin using the computer. 

3. Introduction of Patch-Panels The patch panels prepared for the problem 
now are inserted in all patch-bays, the machines are slaved and the PS (pot set) 
mode is selected. 

The problem log is now started. This is an extremely important part of the work. 
It should record, with the appropriate time, all events that may affect the 
results. For example, starting, ending and transition points in the program; 
changes to patching and diagrams; malfunctions; etc. 
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This record shoulQ be designed to organize and describe the status of a problem 
when it is removed from the computer, or is interrupted for more than a short 
time (e.g. overnight). Ideally, the problem could continue from the last run, 
with a list of potentiometer settings as read-out at the end of the period, a 
list of switch positions and special conditions, strip chart recordings of all 
important amplifier outputs, special functions, etc. 

If there are any overloads in the PS mode, they can appear in: 

1) high-gain amplifier circuits (this does not matter at this stage) 
2) circuits involving simple inverters without pot-set relays 

(if this is a consequence of (1), it does not matter) 
3) faulty amplifiers (this should be investigated, and if the ca.use 

of the troub Ie is not in the patching,a grounded output terminal, 
for instance, the amplifier should be replaced) 

4. Potentiometer Setting The pots are set according to the pot sheets. 
Recall that: 

and 

1) for pots in cascade, the innermost pot must be set first for correct 
loading 

2) pots loaded by servo cups should be set for a 70% attenuation 
setting of the servo 

3) pots loaded via function switches must be set with the load switched on 
4) pots loaded via comparator relay contact must be set with the load 

switched on 
5) pots patched to the open end of the feedback resistor of high-gain 

amplifiers require special handling: the grid of the amplifier 
must be temporarily grounded during the setting since the pot set 
relay does not affect the FB resistor 

6) pots loaded by diode circuits are set by considering the operation 
and ultimate output of the circuit. 

5. Check of Special Circuits -- Special circuits, such as diode and relay 
circuits, can be checked at this stage by patching their input terminals to 
appropriate signal generators or to pots set by hand and then observing and 
recording the output signals. It is necessary to switch the machines to the 
IC (RESET) mode or to the OPERATE mode to accomplish this. The overloads that 
occur during the test in components other than the circuits being checked are 
immaterial. After correction of errors, if any, and completion of the check, 
restore the original patching as required for the problem. 

G. Static Check Debugging 

When patching-modifications necessary for the static check have been made, as in 
the case of breaking an algebraic loop, record all modifications in the problem 
log. This will result generally in a number of amplifier and servo overloads. 
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It is best to start looking at points following the parts of the circuit 
containing the overloaded elements to find out Why they are overloading. 
In this way, a number of gross errors will be discovered and eliminated. 
It may be necessary to introduce small feedback capacitors on critical 
high-gain amplifiers and algebraic loops. This will become apparent 
immediately. When there are no further overloads evident, the static check 
can be carried out in the usual manner. If everything checks, the static de­
bugging is terminated. The output of all integrators should be measured to 
check (against the tabulation) that the static check values actually have 
been imposed. Then, the check-points or derivatives are measured and compared 
to the tabulation. More often than not, a number of gross disagreements between 
measured and calculated derivatives will be found and the real static check 
work then begins. 

The general idea is to start by checking end results, and to work backwards 
in the signal flow until the error is detected. This reduces the debugging 
time because: 

1) If end results check, the inputs need not be investigated 
(though this is recommended if a detailed study of small 
errors is intended). 

2) If one works forward in the direction of signal flow, all 
accessible points will have to be measured and compared 
with precalculated values even if no errors are present. 

When an integrator has a wrong derivative, the inputs of this integrator are 
measured separately (in general, they will be pot wipers), noted down and 
multiplied by appropriate input gains as given in the circuit diagram. 

Using the static check calculation,the individual terms corresponding to these 
inputs are identified and scaled. A term by term comparison then can be 
carried out between the statically computed values and the measured values. 
This will lead to detection of the cause of the discrepancy and error. 

If one or more of the derivative inputs does not check: 

1) The pot is not connected to the right signal; check the patching. 
2) If the patching is correct, either the pot setting calculation, 

the actual pot setting or the static check calculation is wrong. 
Find out Which is the cause by referring to the scaled equations and 
pot sheets. 

3) The pot is defective (input shorted, blown fuse, etc.). 

In any case, take corrective action and make the proper modifications in the 
computer diagram, pot sheets, amplifier sheets or static check calculations. 

If the signal that should be coupled to the pot does not check, do not consider 
the pot until this signal has been made to check. In order to find the origin 
of the error, work gradually, opposite to the direction of signal flow, always 
comparing with static check calculations and keeping in mind that the latter 
often may contain errors and must not be taken for granted. 

-270-



When an error has been found and corrected, go back to the derivative term 
under investigation and see if it checks. If it does not, another error is 
located somewhere between the integrator input terminal and the point where 
corrective action was taken. Work opposite to the direction of signal flow, 
again starting from the input terminal of the integrator until this error has 
been found and corrected, and so on. 

Finally, the voltage supplying the pot will be correct and, if the wiper 
voltage still does not check, we must return to the previous case. 

If all individual input terms check but not the derivative, start by checking 
the addition in the static check calculation. If this is correct, then; 

1) One or more pot output terminals are patched to the wrong amplifiers 
or are not patched to anything. 

2) A pot is patched to the right amplifier but to a wrong input 
terminal (gain). 

3) The pots are patched correctly but a network input resistor is 
defective. 

4) A faulty patchcord is used in the input connection. 

Check the patching to find out which is the case. 

If the patching is correct the trouble will be caused by a defective resistor 
unless the derivative (summing junction current) measuring system is not 
functioning properly. To check this, patch the summing junction (SJ) to the 
grid of another amplifier with resistive feedback, and measure the output of 
this amplifier. If the output is not correct and is the same as the value 
measured previously, an input resistor is defective. Such defects in equipment 
resistors and measuring circuits are very rare, and have been considered here 
only in order to cover all possibilities. 

1. Implicit Algebra If high gain amplifiers and/or algebraic loops are 
used (and turn out to be stable or capable of being stabilized), the calcula.tion 
of the static check may prove difficult. The machine then is, in fact, doing 
in the static state something which may be quite lengthy to do by hand 
computation such as: solving a system of 3 or more simultaneous linear equations, 
solving a system of 2 simultaneous equations of the third degree in 2 variables, etc. 

Apart from the difficulty in doing the check calculation, difficulty will be 
experienced in carrying out the debugging. In the static check condition, 
integrators are static. The main computing loops thus are open, and it is 
convenient to work backwards against the direction of the signal flow to 
identify the sources of error. When algebraic loops are present, all the 
variables in them (and they may be numerous) react on each other. If a single 
error exists, all these variables will be incorrect and it is difficult to 
identify the exact cause of the error. 
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If the loops are simple and each one involves only 2 or 3 variables, a little 
logic and some calculations based on the actual, false outcome of the loop will 
detect the error. 

If the loops are more complex, one may find serious difficulty in detecting 
an error. In such a case, an alternative approach is preferable, as described 
below. 

For high-gain equations, convert the high-gain amplifier to an integrator for 
the static check. This means that the algebraic relation will not be satisfied 
in the static check mode, the idea being to have a large error and to check the 
measured error signal at the input of the temporary integrator against the 
computed value of this error. This procedure has the advantage of breaking the 
loops so that the debugging can proceed in the same systematic way as for 
derivatives. 

If a high gain or summing amplifier should have a value imposed on its output 
during the static check, but it cannot be replaced by an integrator, it should 
be transformed into an inverter fed by reference voltage through a potentiometer. 
Its normal inputs are fed to a check amplifier which effectively reduces the 
original amplifier to an integrator circuit in the IC mode. 

After these checks, it is vitally important that the amplifiers are turned back 
into high-gain amplifiers. It is worthwhile to identify patching changes 
temporarily with labels or pieces of colored tape. 

H. Completeness of the Static Check 

The static check is the most complete check that can be done quickly and without 
major patching changes. The latter point is very important. Any check which 
necessitates important patching changes to restore the problem conditions after 
the check conditions introduces the very serious dangffof an error in these 
patching changes, an error that cannot be detected. 

The limitations of the static check are: 

1) The operation of integrators is not checked (value of capacitor, 
drift). This requires a rate test which will sho\., whether integrator 
bottle plugs have been forgotten or incorrectly inserted. 

2) The hold relay operation is not checked. However, it establishes a 
contact between summing junction and amplifier grid in the OPERATE 
mode which can be checked only by actually putting the computer into 
the Operate mode. This is done best with a different patch-panel, 
as a regular routine test. If the contact does not close, the 
integrator output will stay in its initial condition a fact that is 
easy to detect on recordings. 
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3) The static check is made effectively at only one point which is 
conclusive for linear elements, electronic multipliers and untapped 
servos. It is not entirely conclusive for servo cups operating in 
the "normal" mode with the center tap grounded. When a servo is 
used with a grounded center-tap (normal connection), and one end 
is not receiving its correct input voltage (due, for instance, to 
the omission of a patchcord), the unit will work properly if the 
wiper stands between the center tap and the other end, assuming 
it to be correctly patched. The error can, therefore, only be 
detected if the static check values happen to be chosen so that 
the wiper stays in the "wrong" half of the cup. This possibility 
should always be kept in mind and if there is any doubt, it is 
recommended that the sign of an appropriate initial condition 
be changed temporarily so that the wiper moves to the other section. 
The output value can be measured and compared to a computed value. 
It is not necessary to repeat the whole static check with this 
new initial condition. To prevent any errors due to oversight or 
omission, the sign of the initial condition should be restored to the 
original va.lue immediately after the test. Similar remarks apply 
to the sine-cosine cups of resolvers. 

I. Dynamic Check 

Dynamic debugging is action taken between actual computer runs in order to correct 
or improve the set-up. It deals mainly with scaling accuracy, noise and 
stability. As far as scale factors are concerned, the overload alarm will warn 
about excessive voltages (ar rates of change of voltage on servos), which may 
necessitate a change in scale factors. 

It is just as important, particularly in non-linear problems, to make sure that 
all voltages are sufficiently large, especially multiplier inputs and divisors 
(for division). With servo-multipliers, this can be checked by watching the dials. 

Non-linear algebraic loops may become unstable for certain input_values reached 
during runs, while being stable for the static check values. Stabilizing action 
(small feedback capacitors or changes in set-up) must be taken. 

Inaccuracies, such as non-repeatability or non-conservation of energy, matter, etc., 
can be reduced by: 

1) better scaling 
2) more accurate non-linear computing elements 
3) better arrangement of non-linear circuits 
4) suppression of redundancy 

Non-repeatability may be due to the fact that one has an unstable solution or 
one on the borderline of instability. In such cases, an error of 10-4 in a pot 
setting may result in a 100% solution error as a consequence. Such a phenomenon 
is not considered as an error since the same dispersion (and often a larger one) 
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would be experienced if the real system were tested under the same conditions. 

A dynamic check, which is part of the normal check-out routine, is easily 
implemented to determine if the dynamics of any of the computing components 
are being exceeded. This check consists of comparing the results of a typical 
run to those obtained from the same run with an increased time scale factor. 
If no dynamic problems exist, the results will be identical. If they are not 
identical, the time scale factors should be increased until agreement is obtained 
between two sets of results. Computer results should be checked against: 

1) analytical solutions 
2) experimental data 
3) digital computer results whenever possible. 

J. Production 

Now that the problem is operational, results may be obtained. During this period 
it is suggested that: 

1) All actions and observations be recorded in the problem log. 
2) All results be identified by run number and properly labeled. 
3) If the problem is left for any period of time (several hours, 

over night, etc.), the last run prior to shut-down should be 
repeated for check purposes. 

4) At the end of the computer solution period, a brief review of 
important items should be written immediately, giving a brief 
history of the operation, the degree of success, and indicating 
any future plans. 

K. Connnents 

It will be realized from these notes that the solution of problems by computer 
methods requires an organized approach. This is particularly true for problems 
requiring large numbers of computing units with many opportunities for errors. 
Human error is most usually the cause of breakdowns in problem solution on a 
computer. Rarely does the fault lie in the machine. 

If by organization and correct recording of steps taken, these errors can be 
eliminated, reduced or even quickly corrected, then the extra time required 
to organize one's methods will result in an over-all saving of time and 
certainly a reduction in the number of frustrating doubts that can arise in a 
poorly prepared computer solution. 
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PROBLEM ____________________________ ___ 

PRO GR AMM E R ________________________ _ 

EAI 8800 SCIENTIFIC COMPUTING SYSTEM 

AMPLIFIER ASSIGNMENT 
SHEET 

------

AMP CAP INV/MULl AMP rAP INV/MULT 
----1 SEL VARIABLE DERIV OUTPUT ~ VARIABLE OUTPUT SEL VARIABLE DERIV OUTPUT I---VARIABLE OUTPUT 
MODE MODE MODE MODE 

AOOO A004 AOIO AOl4 
t--- - - -
AOOI M004 AOII MOl4 
r-- - -

A002 AI04 AOl2 Al14 
f--- - - I---

A003 MI04 AOl3 Ml14 
t--- - -
A200 A204 A210 A214 - r----- -

A201 M204 A211 M214 
r--- - - -

A202 A304 A212 A314 
i----- - -

A203 M304 A213 M314 
~ - i--- -

A400 A404 A410 A414 - - i--- I---

A401 M404 A411 M414 
I--- - r--- I---

A402 A504 A412 A514 
r--- r--- r--- -

A403 M504 A413 M514 
f--- I--- I--- -

AMP VARIABLE I 
S J 

A510 IA511 I IA512 I A513 I INVERTER 
MODE OUTPUT I I I I I I 
A600 A604 A610 A614 
f--- - ,..---- -

A601 M604 A611 M614 
r--- f--- f--- ~ 

A602 A704 A612 A714 
I--- r--- r--- r---

A603 M704 A613 ~ f--- f--- I---

A800 R800 R900 A810 R810 R910 
I---

R801 R901 R811 R911 

A801 R802 R902 A811 R812 R912 

R803 R903 R813 R913 

A802 R804 M800 A812 R814 M810 
f---

R805 M801 R815 M811 

I
A803 R806 M802 A813 R816 M812 

R807 M803 R817 M813 

AMP TIS RESOLVER I FC IPRI PR2 RPIRA AMP TIS RESOLVER I FC IPRI PR2 RP IRA 
~ CAP VARIABLE OUTPUT 

MOD E ICRP'ICJ'RI CPR2 CRPlcRA CAF VARIABLE OUTPUT 
MODEjcRP'lCPR' CPR2 CRPICRA MODE MODE 

PROJECT NO. 

CONSOLE _______ DATE ___ _ 

AMP CAP tN/MULl 

SEL VARIABLE DERIV OUTPUT t--- VARIABLE OUTPUT 
MODE MODE 

A020 ~ f---

A021 M024 
i--- -

A022 Al24 
f--- -
A023 Ml24 
i--- ~ 

A220 A224 
i---

A221 M224 - r---

A222 A324 -

A223 M324 
~ -
A420 A424 
r--- -

A421 M424 
f--- r---

A422 A524 
r--- I---

~423 M524 
r--- 1---

A 520 IA521 I IA522 I 1A523 

I I I I I 
A620 A624 
r--- -
A621 M624 
~ -

A622 A724 
- r---

A623 M724 - I---

A820 R820 R920 

R821 R921 

A821 R822 R922 

R823 R923 

A822 R824 M820 

R825 M821 

A823 R826 M822 

R827 M823 

AMP TIS RESOLVER I FC I PRllpR2 RP I RA 
CAF VARIABLE OUTPUT 

MODE ICRP'ICPRIICPR2 CRPICRI MODE 

MI215A 
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PROBLEM ____________________________ ___ 

PRO GR AMM ER __________________________ _ 

AMP CAP 

MODE SEL 

A030 

A031 

A032 

A033 

A230 

A231 

A232 

A233 

A430 

A431 

A432 

A433 

A530 

A630 

A631 

A632 

A633 

A830 

A831 

A832 

A833 

AMP TIS 
MODECAF 

VARIABLE 

A531 

VARIABLE 

DERIV 
INV!MULT AMP CAP 

OUTPUT MODE VARIABLE OUTPUT MODE SEL 

A532 

A034 -

M034 -

AI34 
I-

MI34 
I---

A234 
I---

M234 
I-

A334 
I---

M334 
I---

A434 
I-

M434 
I---

A534 
I---

M534 
r--

A634 -

M634 
i---

A734 
r--

M734 
I---

R830 
R831 
R832 
R833 
R834 
R835 
R836 
R837 

A533 

A040 

A041 

A042 

A043 

A240 

A241 

A242 

A243 

A440 

A441 

A442 

A443 

A540 

A640 

A641 

A642 

A643 

R930 A840 
R931 
R932 A841 
R933 
M830 AB42 
MB31 
M832 AB43 
M833 

RESOLVER I FC PRI PR2 RP I RA AMP TIS 
OUTPUT ,r 

MODE ICRP' CPRI~ICRPICRA MODE CAr 

EAI 8800 SCIENTIFIC COMPUTING SYSTEM 

AMPLIFIER ASSIGNMENT 
SHEET 

(COLUMNS 3, 4 AND 5) 

VARIABLE DERIV 
INV/MULT AMP leAP 

OUTPUT 'MODE VARIABLE OUTPUT MODE ISEl 

A541 A542 

VARIABLE 

A044 
I---

M044 
f---

AI44 -

MI44 -

M244 
:----

A344 -

M344 
I---

A444 
r---

M444 
I---

A544 
I---

M544 
r--

A644 
r---

M644 
r---

A744 
r---

M744 

R840 
R841 
R842 
R843 
R844 
R845 
R846 
R847 

A050 -

A052 -

A053 -

A250 -

A251 -

A252 
~ 

A253 -

A450 -

A451 -

A452 
'---

A453 
I-

A543 A550 

A650 
I---

A651 
I---

A652 
r---

A653 -

R940 A850 
R941 
R942 AS51 
R943 
M840 A852 
M841 
M842 A853 
M843 
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PROJECT NO. 

CONSOLE _______ DATE ___ _ 

NV/MULT 
VARIABLE DERIV OUTPUT VARIABLE OUTPUT 

MODE 

AI54 
I---

MI54 
I---

A254 
I---

M254 
I---

A354 
I---

M354 -

A454 
-

M454 -

A554 -

M554 -

A551 A552 A553 

A654 -

M654 -

A754 
-

M754 -
R850 R950 
R851 R951 
R852 R952 
R853 R953 
R854 M850 
R855 M851 
R856 MB52 
R857 M853 

VARIABLE 

MI215B 



PROBLEM ______________________ __ 

PROGRAMMER ____________________ _ 

POT ~,~ .--~ POT 'nA~~~ ...... I~ wt:.t I ''''''-I'~T VALUE VALUE ,. .". ... _ I t:J" 1--... · , .... , ..... ~I 
1000 010 

1001 10 
002 012 

003 013 

00 110 

101 III 
102 

103 113 

20e 210 
,201 1211 
202 1212 

20~ 213 

!300 1310 

301 311 

'302 312 

1303 1313 

400 410 

401 411 

402 412 

1403 4 

:500 510 

501 

~2 512 
1503 1513 

600 610 

II 6 

1602 612 

1603 613 

700 1710 

711 

702 712 

703 17~ 
180e 810 

801 811 

802 812 

1803 _8~ 
900 19 

1901 911 

1902 912 

1903 913 

EAI 8800 SCIENTIFIC COMPUTING SYSTEM 

PDTENTIDMETER ASSIGNMENT 
SHEET 

POT '~~.:::TER VALLE i\"Vt:.ttll..l~ I POT In:"~""",,, I ttc VALUE \"vt.ttII..IENT 

020 1030 
021 03 

022 032 

023 033 

120 130 

121 1131 
122 132 

123 1133 

220 230 
221 231 

12 1232 

223 233 

1320 1330 

321 331 

322 332 

1323 1333 

420 430 

421 431 

422 432 

423 433 

520 530 

5 5 

522 532 
523 533 

[620 630 
'6 631 

622 632 

:623 633 

720 730 

1721 17 
722 732 

1723 1733 

820 830 

821 18 I 

822 832 

823 ~33 

920 930 
921 931 

922 1932 

923 19 ~3 

PROJECT NO. ________________ __ 

CONSOLE ______ DATE __ _ 

POT I .... ~ .... .:.:.~~TER VALUE Il,;Ut:t't'll..lt.I'tIl POT '~ .• ~ ... _II:;I"I VALUE 1""""-" ._._.~I 

1040 1050 
041 051 

042 052 

043 053 

140 150 

141 151 

142 152 

143 153 

240 1250 
241 251 

12 f2 1252 

243 253 

1340 350 

1341 351 

342 352 

134~ 1353 

144c 450 

441 451 

442 452 

443 145: 

540 550 

541 551 

542 552 
543 1553 

640 650 

641 651 

642 i652 
,643 653 

1740 750 

741 751 

1742 752 
1743 1753 

840 850 

841 851 

842 852 

1843 1853 

1940 950 

941 951 

1942 952 

943 953 

277 



PROBLEM 

PROGRAMMER _____________ _ 

VARIABLE + VAIIIABLE + 
L 000 L 010 L 020 
C 000 

INPUT INPUT OUTPUT 
C 010 '""'U' INpUT OUTPUT 

C 020 
DA 002 

INPUT OU'TPVT CONTROL DA 012 
II'If'UT OU'TPVT CONTROL DA 022 

DA 003 DA 013 DA 023 
FS 001 

L I C R I A FS 011 
L 

I 
C R 

I 
.. 

FS 021 
FR 004 FR 014 FR 024 
F 204 

TVPE VARIABLE VAWE F 214 
TYPE VARIABLE VAWE F 224 

F 304 F 314 F 324 
L 200 VARIABLE + - L 210 

VARIABLE .. - L 220 
C 200· C 210 C 220 

FR 2(}:l FR 214 FR 224 

L 400 
VARIABLE .. - L 410 

VAIIIABLE .. 
L 420 

C 4001 
INPUT INPUT OUTPUT 

C 410 
INPUT INp JT OUTpUT 

C 420. 
DA 402 I"'UT OU'TPVT CONTROL DA 412 

INPUT OUTPUT CONTIIOL DA 422 
DA 403 DA 413 DA 423 
FS 401 

L I C R I .. FS Llil L I C R 

I 
A FS 421 ' 

FR 404 FR 414 FR 424 
F 604 TYPE VARIABLE VAlUE F 614 TV ... t. "AHIABLt. VAWt F 624 
F 70Ll F 714 F 72L1 

-
L 600 VARIABLE + - L 610 VARIABLE + - L 62C 
C 600 C 610 C 620 

FR 604 FR 614 FR 624 

L 800 
VARIABLE + 

L 810 
VARlA8L£ .. 

L 820 
800 '""'U' INf>UT OUTPUT INPUT INPUT OUTPUT 

C C 810 ... C 820 
DA 802 

I ... U1 UUTPIJT CONTROL 

DA 812 
INPUT OUTPUT CONTROL 

DA 822 
DA 803 DA 813 DA 823 
FS 801 L I C I R I .. FS 811 L I C R I A FS 821 

EAI 8800 SCIENTIFIC COMPUTING SYSTEM 

VARlA8L£ 

INPUT 

INPUT 

L I 
TY"E 

VAlUABLE 

VARIABLE 

INPUT 

INPUT 

L I 
TYPE 

VARIABLE 

VARlA8L£ 

INPUT 

INPUT 

L 

I 

NDN-LINEAR 
SET-UP SHEET 

.. VAIIIA8L£ 

L 030 
INPUT OUTPUT 

C 030 
INPUT 

OUTPUT CONTROL DA 032 
INPUT 

DA 032 
C R I A FS 031 

L I 
FR 034 

VARIABLE VAlUE F 234 TV"! 

F 334 
+ - L 230 

VARIABLE 

C 230 
-

FR 234 
F 434 TVPE 

F 534 
+ - L 430 VARIABLE 

INPUT OUTPUT 
C 430 INPUT 

0UTPl1T CONTROL 

C R I A 

FR 43~ 
VARIABLE VAlUE F 634 TVPE 

F 734 
+ - L 6301 V""IABLE 

C 630 

FR 634 

.. 
L 830 

VARIABLE 

INP'JT OUTPUT I" ... U, 

C 830 - --,---. 
OUTPUT CONTROL DA 832 

INPUT 

DA 833 
C I R I A FS 831 L I 

278 

.. 
INPUT 

OUTPUT 

C 

VARIABLE 

+ 

VARIABLE 

+ 

INPUT 

VARIABLE 

+ 

+ 

I Nf>UT 

OUTPUT 

C 

L 
OUTPUT 

C 
CONTROL DA 

DA 
R I A FS 

FR 
VAlUE F 

F 
- L 

C 

FR 
VAlUE F 

F 
- L 

OUTPUT C 

FR 
VALUE F 

F 
- L 

C 

FR 

L 
OUTPUT 

C 
CONTROL DA 

DA 
R I A FS 

PROJECT NO. 

CONSOLE 
_ ______ DATE ___ _ 

VARlA8L£ .. VARlA8L£ + 
040 L 050 
040 

INPUT INPUT OUTPUT 
C 050 

INPUT INPUT OUTPUT 

042 
I ... UT OUTPUT CONTROL DA 052 

I ... IJT OUTPVT CONTROL 

043 DA 053 

041 
L 

I 
C R I .. 

FS 051 
L I C R I A 

044 FR 054 

244 
TVPE VARIABLE VAWE F 254 

TYP! VARIABLE VAWE 

344 F 354 
240 VARIABLE + - L 250 

VARIABLE + 

240 C 250 

244 : FR 254 
444 TYPE vARIABLE VAWE F 454 TYPE VARIABLE VAWE 

544 F 554 
440 VARIABLE + - L 450 VARIABLE + 

440 INPUT INPUT OUTPUT C 450 INPUT INPUT oUTPUT 

444 FR 454 
644 TYPE VARIABLE VALUE F 654 TYPE vARIABLE VAlUE 

744 F 754 

640 VARIABLE + - L 650 VARIABLE + -
640 C 650 

644 FR 654 

84C 
VARIABLE + 

L 850 
VARIABLE .. 

84C 
INPUT INPUT OUTPU1 

850 
INPU INf>'J' uU'f>U 

C 
INPUT INPUT OUTPUT CONTROL 

842 
OUTPUT CONTROL 

DA 852 
843 DA 853 
841 L I C R I A FS 851 L I C I R I A 

MI2150 



CHAPTER XI 

ANALOG COMPUTER SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 

A. Introduction 

In formulating mathematical descriptions of physical systems, one 
must be aware of the fact that all physical phenomena actually are 
described by partial differential equations, and that ordinary differ­
ential equations are only approximations. Therefore, one is confronted 
with the task of mechanizing one or more partial differential equations 

. on the analog computer. The purpose of this chapter is to indicate 
how the analog computer solutions of these distributed parameter 
systems are obtained. Although there are several methods of simula­
ting distributed parameter systems, we will restrict ourselves to 
"eigenvalue" and lumped parameter model methods since they are most 
frequently used in practice. 

A tabulation of selected, linear partial differential equations and t2e 
physical phenomena they describe are contained in Table XI-I. The \7 
notation, which is common practice in the literature (1) (2), is a linear 
combination of space derivatives. 

TABLE XI - I SELECTED LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

NAME 

Laplace's Equation 

Diffusion Equation 

Wave Equation 

Poisson's Equation 

Transport Equation 

Transverse Motion 
Equation 

B. Eigenvalue Method 

EQUATION 

2 
\l y = e 

o...,Y + vO...,Y = a 
a t a x 

--1 ~ IE I cfyl + o2y 
pA dx2 L a x~ a t 

PHYSICAL PHENOMENA 

Steady-State Diffusion 

Transient Diffusion 

Wave Motion 

Diffusion From A Source 

Delay Due to Fluid Motion 

a Transverse Vibrations In A Rod 

The eigenvalue method is related directly to the analytical "separation of 
variables" technique which is used to solve linear partial differential 
equations. To illustrate this technique, consider heat transfer in an insu­
lated bar as shown in Figure XI-I, and described by the one-dimensional diffusion 

-279-



equation 

where 

T 
k 

P 
C 
t 
x 

= 

= 
= 

= 

temperature 
thermal conductivity 
density 
specific heat 
time 
length variable (0 ~ x ~ L) 

(1) 

If it is assumed that the solution is the product of a function of length 
and a function of time 

T(x,t) = X(x)e (t) ( 2) 

Equation (1) can be reduced to two ordinary differential equations 

2 
a X = 0 ( 3) 

and 

( 4) 

where a and X(x) are known as the eigenvalue and eigenfunction respectively. 

T(o,t)=O T(L,t)=O 

X=O X=L 

Figure XI-I: Insulated Bar With Fixed End Temperatures 

A general solution to equation (l)is obtained by combining the solutions 
of equations (3) and (4 )*. This resultant solution contains constants of inte­
gration, and eigenvalues or frequencies which are evaluated by subjecting 
the solution to the boundary values and initial conditions of the system. 
The result of this evaluation yields a mu1tiva1ued eigenvalue 

La = n ~ n = 1, 2, 3, 4 ---n , (5) 

since there are an infinite number of eigenvalues and eigenfunctions that 

X(x) = (AI Sin ax + B' Cos ax), B(t) -

(C I e -a2t ). 

2 
f.CI",-a t), () ( ) ~ ~ therefore, T x, t = A Sin ax + B Cos ax 
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satisfy the zero temperature boundary conditions at the ends of the bar. 
Therefore, the solution to equation(l)is the sum of all possible solutions 

n==oo 

T(x, t) ::; LA X B 
n=l n n n 

where A is an amplitude coefficient. n 

(6) 

The actual mechanics of obtaining the solution to this problem will be 
omitted; however, they are readily available in the literature (2) (3). 
The solution to this problem is: 

n ::; 00 

T(x,t) ::; TI L 
n ::; 1 

which is representative of the form of analytical solutions obtained for 
partial differential equations. Fortunately, these series converge rapidly 
and only the first few terms are required for reasonable accuracy. 

Since the analog computer can integrate continuously with respect to only one 
independent variable, it can not solve equation(l) in its original form. 
However, it can be used to solve the eigenfunction equation, equation 0), to 
obtain the correct eigenfunctions and their corresponding eigenvalues. 
These results are obtained readily using the circuit shown in Figure XI-2, 
with high-speed repetitive operation which reduces the time required for the 
trial and error solution to a few minutes. The objective of the simulation 
is to determine the eigenvalues which will produce eigenfunctions that are 
zero at both ends of the bar. The number of eigenfunctions required for a 
given problem depends on the convergence of its series solution. 

The amplitude coefficients, A , also can be determined on the analog computer 
n 

for their associated eigenfunctions (5). Therefore, the first few terms 
of a series solution can be determined if time is held constant. Typical 
results are a family of curves, such as temperature versus bar length at 
fixed values of time. 

This method of solution is used generally when the normal modes (eigen­
functions) of a system are required. A typical example is seen in the deter­
mination of wing-flutter, a problem familiar to the aircraft industry. The 
main drawback of this method is that it is restricted to linear systems; 
therefore, a more general approach to the analog computer solution of partial 
differential equations is desirable. 
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Figure XI-2: Computer Solution by Eigenvalue Method 
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c. Lumped Parameter Model 

To illustrate this method of solution, assume a metal bar is divided 
into a finite number of equal sections, n as shown below. Restricting 
our interest to two adjacent sections and to small 

Tn-I Tn 

n-I n 

Tn+ I 

ntl 

n l:lx =x 
n l:lx = L 

values of ~x, the heat transferred into and out of the shaded area can be 
approximated by the familiar, steady-state heat transfer equation 

to obtain 

and 

k A ~T q = Rate of Heat Transfer = ~~~ 
fj,x 

kA [T - T ) q = - n n-l out ~x 

where A is the cross section area of the bar. 

(8) 

(9) 

( 10) 

From energy balance considerations, the energy gain of the shaded, 6X, section is 

(A fj,x p) C dTn = q - q = kA (T - T J - 10 [T - T ] dt in out fj,x n+l n 6 x n n-l (il) 

Similar equations can be obtained for all values of n. Thus, rather than 
by the original partial differential equations, the system is now repre­
sented by a set of ordinary differential equations. This set of equations 
must be solved simultaneously or in "parallel" to simulate the system. The 
computer solution of this problem for a bar divided into five equal sections 
is shown in Figure XI-3. The initial temperature of the bar, T

I
, and its 

zero and end temperatures are mechanized easily on the computer. 

There is no need to perform an analysis of the physical system to convert a 
partial differential equation into a set of ordinary differential equations. 
The same results could have been obtained directly by finite difference 
approximations which areiobtained from manipulation of the Taylor Series 

~ ~ 
(x - x ) (onT~ (x - x )n 

T( x t) = T(x t) + _. 0 + ______ + - • 0 
, 0' 0 1 ! 0 n n : 

:x x ~xo 
o 

(12) 
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System 

Circuit Diagram 

TO 
I 
I 
I 
I 
I 
I 
I 
I 

1..=0 

TO __ --f 

TI 
I 
I 
I 
I 

p x 

T3 
J 
J 
f 
J 
J 
I 

Cp(/:).x) 2 

Cp(~X)2 

T4 
I 
I 
I 
I 
I 
I 

x=L 

~x = .!:-. 
5 

TO = T5 = 0 

Figure XI-3: Illustration Of Parallel Computer Solution 
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For example, since 

-,2 2 
T(x + b,x,t) = T(x,t) +(0..1.) b,x +(.:...1:) (Ax) + -__________ _ 

a x d x2 2 
(13) 

and 

T(x - DX, ( d T ) ( ifT ) ( [,x) 
2 

t) = T ( x, t) -\ o~ b,x + Ox 2 2 + ------------ ( 14) 

their sum represents an approximation for a second derivative 

T(x + l}x,t) 2 T(x,t) + T(x - l}x,t) (15) 

which could have been used directly in the previous example. The higher 
order terms in equation~3)and(14)produce an error in the resultant finite 
difference approximation, equation(15~ 

This error, which is difficult to define in convenient form, normally is 
represented by its initial term which serves as an accuracy guide. For 
example, consider the elementary finite difference approximations and their 
initial error terms listed in Table XI-II. The middle difference approxi­
mation for a first derivative is more accurate than the backward and forward 
first derivative approximations. This can be verified by representing the 
slope of a curve at a given point by two adjacent points compared to one 
adjacent point. 

Fortunately, most partial differential equations can be simulated by a 
relatively small set of ordinary differential equations. This is illustrated 
by Table X -III which tabulates the decay constantt error introduced to the 
first three terms (modes) of the analytical series solution (by the finite 
difference approximation of the diffusion equation). These errors are 
small compared to the error usually encountered in parametric data, and 
equal to or less than the errors obtained from digital solutions of the same 
equation. The analog computer errors may be greatly improved by using higher 
order finite difference approximations and other simple techniques, which 
are discussed in the literature (4) (7). 

t Reciprocal Of The Time Constant 
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Table XI-II, Finite Difference Approximations 

Approximations First Error Term 

First Derivatives 

Forward Difference 

Q..I ~ T(x + l}x,t) - T(x,t) 
OX t;.,x 

Backward Difference 

o T ~ T ( x , t) - T e x- Ax, t) 
a x b.x 

Middle Difference 

aT = T(x + 6x,t) - Tex - t:>x,t) 
a x 2 b.x 

2 3 
_ (Ax) (U)+ ___ _ 

3! 0 x 3 

Second Derivatives 

Tex+ t:>x,t) - 2T(x,t) + T(x- 6x,t) 

(b.x) 2 

Table XI-III Decay Constant Error Versus Number of Sections (7) 

Percent Error 

Number of Sections 1st Mode 2nd Mode 3rd Mode 

5 -0.8 -7.0 -20.0 

8 -0.3 -3.0 -8.0 

10 -0.2 -2.0 -5.0 
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Although an increase in the number of equations (or divisions in the physical 
system) reduces the error of the finite difference approximations, the compu­
ter solutions approach their analytical solutions asymptotically. There­
fore, the practical number of equations required is relatively low, and 
additional equations only contribute computer component errors to their 
analog computer solutions. It is significant also that this method is not 
restricted by stability and convergence criteria which are commonplace in 
the digital solution of partial differential equations. 

D. Sunnnary 

This chapter, which is by no means complete, is intended to be a brief 
introduction to the methods used to solve partial differential equations on 
the analog computer. Its purpose is to assure the reader that the modern, 
electronic analog computer can and has simulated distributed-parameter 
systems since its inception in the early 1950's. Therefore, additional 
information on this topic is readily available in the open literature (4) (5) 
(6) (7). 
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CHAPTER XII 

ACCURACY OF ANALOG COMPUTER SOLUTIONS 

A. Introduction 

The general techniques of evaluating errors which occur in analog computer 
solutions are referred to by the broad term "error theory ". Although quite 
a bit of effort has been applied to the study of error theory, the results have 
not been encouraging. This is b.ecause the problem of determining the errors 
arising in any analog computer study is usually long and involved depending on 
the particular study being considered, and is,by its very nature, statistical. 

An appreciation of the task of evaluating the total error in an analog computer 
solution is best obtained by considering first all the possible sources of 
error as well as by defining exactly what constitutes an error. For our 
purposes, an error will be defined as the difference between a computed or 
estimated result, and the actual value. The sources of computer error are 
indicated in Figure XII-l which indicates two paths one may take to obtain 
results from an existing physical system. 

For discussion purposes, the analog computer simulation of a physical system 
may be subdivided into three stages: 

1) mathematical model 
2) computer programming 
3) computer mechanization 

As a problem passes through each of these stages, errors arise which effect the 
overall accuracy of the results obtained. Our objective here is to discuss 
these stages in turn, and to indicate the sources of errors. 

B. Errors in Mathematical Models 

When a system is to be analyzed for the express purpose of deriving a 
mathematical model, simplifying assumptions are made as to its geometry and 
physical behavior. Typical examples are the assumption of 

1) spherical particles to represent irregular solids in a packed bed 
2) coplanar forces in a simple pendulum 
3) perfect mixing of a fluid 
4) infinite and semi-infinite geometry 

Although the results obtained from the solutions based on simplified 
representations of a system are adequate, one must be aware that an error 
exists. The assumed physical system which is used to describe significant 
physical phenomena occuring in the actual system does differ from the actual 
physical system. 
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Although a rigorous mathematical model may be derived for the simplified 
physical system, simplifications will often be made in practice. Examples 
of this inc lude 

1) using steady-state equations for relatively small time-constant 
equations 

2) neglecting minor physical phenomena, such as heat transferred 
through an insula.ted wall 

3) considering physical properties of substances independent of the 
state of the system (i.e., temperature and pressure) 

Hathematical models containing these simplifications, therefore, have a compound 
error 

1) they are based on a simplified physical model of the system 
2) they are reduced in completeness by certain assumptions used to 

reduce their complexity. 

C. Computer Progrannning and Hechanization Errors 

1. 

Prior to 
that two 

1) 

2) 

Component Errors 

discussing programming and mechanization errors, it should be realized 
types of errors are associated with all analog components: 

Static Errors -- the deviation of a component's output from its 
actual value based on constant (zero frequency) inputs 
Dynamic Errors -- all components have frequency-dependent transfer 
functions which makes their accuracy a function of their input 
frequency (this will be discussed later for amplifiers and 
integrators). 

The sum of these errors, which is the total instantaneous dynamic error (TIDE), 
is, therefore, frequency dependent. 

The concept of TIDE is very important in evaluating components for their selection 
to perform a specific task in a simulation. 

2. Mechanization Errors 

In progrannning, several computer circuits or components often are available to 
perform the same mathematical operation. Since all components have TIDE associated 
with their operation, one circuit or component will be optimum for a specific task. 
Therefore, it is desirable that programs be devised in an efficient manner using 
the guide lines described in Chapter X. Progrannning errors due to the selection 
of inaccurate circuits are human errors; they can be corrected. 

Typical examples of instances where computer component error can be reduced are 

1) 

2) 
3) 

the reduction of the number of amplifiers in a mechanization by 
reprogrannning 
optimize potentiometer settings by rescaling 
careful consideration ot variable frequencies before selecting a 
multiplier (servo versus quarter square). 
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D. Data and Readout Errors 

Additional errors in analog computer solutions can be attributed to: 

1. Parametric Data Inaccuracies 

Inaccurate parametric data is frequently the biggest factor in the overall error 
associated with analog computer results. For example, if parameters are accurate 
to within 5 or 10% , one would not be concerned with a possible 1% computer error. 
The same considerations would apply if one were considering a digital computer 
for a specific application (because of its accuracy) rather than an analog 
computer. 

2. Readout Device Inaccuracies 

For non-stationary solutions, the accuracy of recording devices which are 
frequency-dependent is important and should be considered. For example, 
the dynamic error of an x-y plotter being driven at 10 inches per second is 
0.1% of full scale. 

Normally, voltages within the computer are scaled to be as large as possible 
without overloading the computing components. However, where a quantity 
changes its magnitude considerably during a solution, one still has a. difficulty 
measuring it for small values. Sometimes it is possible to overcome this 
difficulty by rewriting the problem. This is particularly so if one can make 
use of the adjoint technique described in the literature (7),(8). Furthermore, 
rewriting the problem, possibly making some approximations, may lead to a 
need for considerably less equipment. This would lead to sma.ller machine errors 
by introducing known errors of approximation. Both of these techniques have 
been used successfully to reduce the order of the machine errors associated 
with problem variables. 

E. Comparison of Analog Solutions and General Connnents 

In general, one may conclude that definition, completeness and parametric data 
errors will appear in results regardless of the. method of computation used. 
These errors are invariant with regard to analytical, analog and digital computer 
solutions. Rea.dout and individual component errors are hardware limitations; 
they must be recognized and taken into account. 

Hardware advancements have been significant in the last decade. For example, 

1) quarter square multipliers now have static errors on the order of 
0.02% compared to earlier models whose error was 0.5 to 1.0%. 

2) linea.r component errors have been reduced from 0.1% to 0.01%. 

Since the error associated with an analog solution is time dependent, its 
determination by analysis is very difficult and, at times, virtually impos­
sible. Therefore, a comparison of analog, digital and experimental solutions 
is the most practical method of determining overall solution erroro 
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In this regard, one must realize that experimental data is also subject to 
errors as shown in Figure XII-I. These errors are attributed to: 

1) recording devices 
2) transducers 
3) sampling geometries and techniques. 

Transducer and recording errors are usually on the order of 1.0%. 

In comparing analog and digita.l solutions, it should be realized that the 
accuracy of a digital solution depends on the digital programmer himself, 
as well as the equipment. It is his skill, the size and speed of the computer 
and the time allotted to obtain a solution which determine the accuracy of the 
final result. 

In summary, analog solutions have an inherent resulta.nt error on the order of 
0.1 to 5.0%. In most cases, this error is one or two percent. 

F. Error Theory Investigations 

Having briefly reflected on the overall situation, and indicated the degree of 
accuracy possible, we will now review some of the work that has been done on 
error theory during the last few years. It has, for the most part, been limited 
to an investigation of the errors to be expected in a machine solution of 
linear ordinary differential equations with constant coefficients. 

1. Practical Considera.tions: Errors in Operational Amplifiers 

As pointed out by Bode (1), the transfer characteristic of a summing amplifier 
can never be expressed as a simple gain. Instead, the simplest transfer function 
will take the form 

KG(s) = (1) 

where Kl and Tl represent the amplifier gain and time constant. The attenuation, 

phase characteristics and step response of such an amplifier are shown in 
Figure XII-2. 

When used as an integrator, the ideal transfer characteristic would be l/s. 
However, this again is physically unrealizable for it requires an infinite gain 
at zero frequency, and the normal integrating amplifier will have a simple 
transfer function of the form 

KG(s) 
K 

(2) 
s (1 + l/~s) 
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where K is the open loop gain of the amplifier. The attenuation, phase 
characteristics and step response are shown in Figure XII-3. This transfer 
characteristic implies that the high frequency response of the integrator is 
perfect. This is not so and, therefore, we should add another term to the 
above transfer function 

KG(s) (3) 

where K2 and T2 again represent the amplifier gain and time constant. 

As shown by Macnee (2),theeffect of these two shortcomings in the operational 
amplifier is to increase the order of any differential equation that is applied 
to the computer for solution. Provided the bandwidth of the amplifiers is such 
that the extra roots introduced into the characteristic equation by the computer 
are far removed from the original roots, and also provided that these extra 
roots have negative real parts, then the machine solution will be very close 
to the true solution. The requirement that the real parts are negative is satisfied 
in the case of summing and integrating amplifiers, but ,",ould not be satisfied 
for any differentiating circuit. 

This theoretical consideration implies that the high frequency cut-off of the 
operational amplifier must be as high as possible in order to accommodate the 
solutions of differential equations containing high natural frequencies. Where 
the natural frequencies contained in the solutions of differential equations are 
too high for the operational amplifiers in use, they have to be reduced by 
changing the time scale. 

If one wishes to estimate the errors contained in a machine solution, an 
expression developed by Marsocci (3), ,.;rhich gives the change in roots of the 
characteristic equation explicitly in terms of fi" T

I
, T

2
, may be of value. 

2. The Theoretical Approach: Previous Investigations of Analog Errors 

Murray and Miller (4),discuss the problem of error theory applied to analog computers 
in a more theoretical manner. They define three types of error which could occur 
in a machine solution, namely: 

ex errors: 

f3 errors: 

A errors: 

these are errors introduced by components of the machine, but 
which do not arise from an incLease in the order of the 
differential equation solved 0 

these are errors which arise in the course of a machine 
computation as a result of instantaneous disturbances of the 
solution. 

these are errors which arise due to an increase in the order of 
the differential equation. 
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The approach used by the authors was purely mathematical, and attempted to show 
how the solution, being analytical in Q, ~ and X, depended on these errors. 

Further theoretical work was done by Winson, which amplified the Murray-Miller 
theory to a point of practical application to linear systems with constant 
coefficients. However, the analysis is difficult and does not appear to have 
any easy practical application. 

Howe and Gilbert (5),have obtained practical estimates of the static and dynamic 
error of a resolver circuit. Their approach to the problem was to add an error 
term to the individual terms in the resolution equations, and to solve for the 
errors in the resultant solution. This method, which is applicable for a small 
problem, becomes prohibitive for large or extremely complex problems. 

Meissinger (6),has employed iterative and variational procedures to improve 
solution accuracy by substituting the analog computer solution back into the 
original differential equations. These methods, which are too complex to present 
in detail, have the advantage of using information which is readily available; 
therefore, results are obtained rapidly compared to numerical check solutions, 
etc. These techniques also are valuable in locating the sources of computer 
error. Their only drawback is the amount of computation components required to 
implement the method, which is a function of problem complexity. 

G. Conclusions 

One has to conclude that the determination of errors that can occur in an analog 
computer solution is not an easy task. This is particularly true when the problem 
being solved demands the use of large numbers of computing components. In 
consequence, it is normal to use the computer to obtain qualitative results in 
order to determine the general characteristics of a physical system. 
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CHAPTER XIII 

EXAMPLES OF EFFICIENT PROGRAMMING 

Introduction 

The purpose of this chapter is to provide the student with actual examples 
of the programming procedures described in the previous sections. It is 
suggested that these examples be used as a basis for review and study 
by referring back to the appropriate subsections as the problem solution 
is developed. 

Example #1: The Study of an Aircraft Arresting Gear System* 

In the design of an aircraft arresting gear system, cable tension specifi­
cations are important parameters in determining the maximum landing loads 
and velocities that a particular system can handle safely. Cable perfor­
mance may be described in terms of the following specifications: 

1. Maximum rated cable tension, that value of cable tension 
which will cause the cable either to snap or to be per­
manentlydeformed, i.e., to exceed its elastic limit. 

2. Working limit cable tension, that value which generally is 
defined as one-half of the maximum rated cable tension. 
Pragmatically, it is that value of cable tension such that if 
cable tension is constrained below this value, the cable life­
time will be essentially indefinite. 

The cable tension is assumed to be proportional to its elastic stretch 
under the action of an applied force. 

From previous design experience, modern development in equipment, new ideas, 
etc., a design configuration for the system has been proposed, and this is 
depicted in Figure XIII-I. The symbols and units used are given in Table XIII-I. 

The basic arresting gear system is symmetrical mechanically, and it is 
assumed that the aircraft arresting hook "engages the dead center of the 
cable about sheaves s3 and s; during landing. One-half of the overall 

system consists of a piston, p, which produces a drag force proportional to 
a function of its instantaneous displacement and velocity, linked by m3ans 
of Cable 2 to a carriage of mass, m2 , which runs on tracks parallel to the 

runway. The cable tension is proportional to the product of the Cable 2 
force constant, and the extension of Cable 2 under the action of an applied 
force. The carriage is linked to the system by means of Cable 1 which extends 
from its anchor position at w to fixed pulley, sl' about carriage pulley, s2' 

and fixed pulleys, s3 and s3. The system is originally in static equili­

brium with all cables taut. 

* Courtesy of All American Engineering Co., Wilmington, Delaware 
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h 

Figure XIII"l Basic Aircraft Arresting Gear System 

The types of aircraft to be considered for this study are classified as 
follows: 

1. Fighter airplanes in the weight range 6-20 tons, with landing 
speeds of approximately 110"160 mph. 

2. Light bomber aircraft in a weight class up to 23 tons, with 
landing speeds of 140-200 mph. 
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The objectives of the study are twofold: 

1. To determine the system response over a range of aircraft 
landing speeds and loads. 

2. To determine those combinations of aircraft landing speeds and 
weights within the above range, which would result in cable 
tension exceeding the working limit cable tension. 

Table XIII-I: Symbols and Units 

Symbol 

x 

YI 

Y2 

Y2 
·Y2 

Y3 

Y3 
Y3 
f(Y3) 

Meaning 

mass of aircraft plus effective mass of cable 

mass of carriage plus effective mass of cable 

mass of piston plus effective mass of cable 

Cable No. 1 spring constant 

Cable No. 2 spring constant 

One half effective runway width = one half 
transverse cable 

aircraft travel 

aircraft velocity 

aircraft deceleration 

cable payout 

carriage displacement 

carriage velocity 

carriage acceleration 

piston displacement 

piston velocity 

piston acceleration 

piston drag coefficient 

Units 

slugs 

slugs 

slugs 

lbs/ft. 

lbs/ft. 

ft. 

ft. 

ft/sec. 

ft/sec
2 

ft. 

ft. 

ft/sec. 

ft/sec
2 

ft. 

ft/sec. 

ft/sec
2 

lbs/(ft/sec)2 

1. Mathematical Model 

The basic system equations can be derived by considering the forces acting 
on the system elements. These equations will be summarized at the end of 
this section. 

Piston forces ..• figure XIII-2 illustrates the forces acting on 
the piston. It is assumed that the piston arm is we~.ghtless and 
that the piston mass, m

3
, includes an "effective weight" of the 

cable. These assumptions simplify the analysis to that of a 
single dimension, lumped parameter system. 
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fk2 

f m3 

Figure XIII-2: Forces Acting on the Piston 

= 

= 
= 
;;: 

piston drag force, proportional to the instantaneous 
displacement and the square of piston velocity 

f(Y3) (Y3)2 

piston driving force, equal to the tension in Cable 2 

k2(Y2-Y3) 

inertia force 

By d 1Alembert 1 s principle, the sum of the external forces and 
the inertial force acting on a particle is zero. From Figure XIII-2, 

or 

m3y + f(Y3) (Y3)2 = 

The piston drag coefficient, f(Y3)' is available empirically, 
and is shown graphically in Figure XIII-3. 

Carriage forces •.. the forces acting on the carriage are shown in 
E l.gure XIII-4. 

Figure XIII-4: Forces Acting Carriage 
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fkl tension in Cable 1 

= kl(Yl - 2Y2) 

fk2 = tension in Cable 2 

= k2(Y2 - Y3) 

fm2 inertia force 

With similar assumptions to those used in the development of the 
piston equation, the equation of motion of the carriage is written 
from the force diagram as 

m2 Y2 + k2(Y2 - Y3) = 2kl (Yl - 2y2) 

It should be noted at this point that the cable tension cannot be 
less than zero, i.e., there will be no force transmitted if the 
cables are slack. 

In other woras, with the above equations we must include the con­
straints, 

fk2 = k2(Y2 - Y3) 

= 0 

Yl < 2Y2 

Y2 ~ Y3 

Y2 < 13 

forces acting on the aircraft ... the aircraft is decelerated by the 
tension force in Cable 1 acting in a direction opposite to the 
aircraft's motion, but through an angle e, as shown in Figure XIII-5. 

Figure XIII-5: Forces Acting on the Aircraft -301-



From the force diagram, Figure XIII-5, the equation of motion of 
the aircraft is 

with the constraint~ . e ..... x __ _ 
Slon a h + 

Y1 

2. SummarY of Equations 

Following the usual procedure, the equations 
puter are written for the highest derivative 

k2 f(Y3) 2 
Y3 • ;;(Y2 - Y3) m3 (Y3) 

•. _ 2k1 k2 
Y2 - ~ (Y1 - 2Y2) - ;; (Y2 - Y3) 

2k1 
·x =--(Y 

m
1 

1 

S • 8 = x 
lon. h + 

constraints 

Y1 

fk1 - k1 (Y1 - 2Y2) 
= 0 

fk2 = k2(Y2 - Y3) 

= 0 
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3. Scaling 

Due to the layout of the proposed design, the mechanical limitations of the 
equipment to be used and from previous knowledge of such systems, the 
maximum values of some of the variables will be predetermined. Such values 
and typical values for the parameters are given below. 

ml 
= mass of aircraft + cables = 414 ;.. 1423 slugs 

m2 
mass of carriage + cable = 45.28 slugs 

m3 mass of piston + cable = 29 slugs 

h = one-half width of runway = 125 ft. 

2 
Y3 = maximum piston drag coeff. = 90 lbs/(ft/sec) max 

x = landing speeds of aircraft = 169 - 295 ft/sec 

Due to mechanical restrictions, the size and type of cable which can be 
used are fixed. Cable parameters can, therefore, be obtained from the 
manufacturer. 

Breaking strength of cable = 150,000 lbs. 

Working limitt cable 2 = 75,000 lbs. 

Working limitt cable 1 = 37,500 lbs. 

k 1 spring constant cable 1 4,550 lbs./ft. 

k2 spring constant cable 2 = 25,300 lbs./ft. 

t The working limit, in effect, includes a factor of 2 for repeated cyclic 
oading. However, in Cable 1, it will be advisable to include an additional 

factor of 2 for dynamic loading effects. This implies upper limits on 
forces fkl and f k2 • Thus 

f kl= kl(Yl - 2Y2) < 37,500 lbs. 

f k2= k2(Y2 - Y ) 3 ;::; 75,000 lbs. 

which will not be programmed since one of the requirements is to be deter-
mined by how much these limits are exceeded under certain load conditions. 

Referring to the summary of equations, the following variables and deriva­
tives will be represented on the computer and will, therefore, require 
scaling: 

x, x, x 
Yl 

Y2' Y2' )12 

y 3' Y 3' .y 3 
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The acceleration variables, Y2' and Y3' are not requlred explicitly in the 

l:-esults. They can be formed at the input to integrators and will not, there­
r.C:lre, require scaling as such. The maximum piston displacement, Y3' is given 

::!.s 350 ft. 

The maximum elongation-f0f both cables 
.kl N1 

Yl - 2Y2 = ~ - 35 ft. 
1 

fk 
2 ~ 

k2 

and 

6 ft. 

Therefore 

= 

based on their breaking strength are 

Since the maximum piston displacement, Y3' is 350 ft., the maximum values 
of Yl and Y2 are 

Yl 50 + 2Y3 = 750 ft. 

and 

6 + 
".., 

360 ft. Y2 = Y3 

Recalling that 

X = '" (Y1 + h)2 
_ h2 

and h is 125 ft., the maximum value of x is 860 ft. If the tension in cable 1 
is restricted to 25% of its breaking strength by mechanical res;trictions as 
previously stated, the maximum elongation (Yl - 2Y2) can be reduced from 35 

to 20 ft. for scaling purposes. 

One method for estimating the maximum deceleration, X, would be to consider 
the Kinetic energy of aircraft ( = 1/2 mv2). Assuming that this energy must 
be dissipated in the two pistons, then (piston dissipation force) x (displace-

2 ment) = 1/4 mv . 

The worst case will be when the complete piston length is required to absorb 
the energy and from the drag curve, Figure XIII-3, we see that approximately 
one-half the energy is dissipated in the first 300 ft. and the other half 
in the remaining 50 ft. This suggests that for the worst case the maximum 
deceleration will occur in the last 50 ft. of piston travel. Estimating 
that the force acting on the piston will be twice that required to retard 
the aircraft, then 

1/4 
2 

mv 
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where 

when 

Therefore 

fd 

d 

m 

v 

a 

a 

= dissipation force 

= piston displacement 

= mass of aircraft 
;; aircraft velocity = x 

= aircraft acceleration =·x 
2 

= x = 1 ~ can be assumed to be a maximum 
8 d 

v = x maximum = 300 ft/sec 

d = minimum = 50 ft. 

x max 
1 

= -
8 

2 
(300) 

50 
= 225 

2 
ft/sec 

To determine the maximum values of 12 and 1 3 , assume that 

. ,.... ~ 1/2 · 
Y 2max ,.., Y3max y lmax 

Estimating that 11 will be approximately equal to x max max 

Yl ~ y ~ 300 ft/sec. max max 

Then 12 and 13 have maximum values of 150 ft/sec. 

Now that all necessary information is available, the variables may be scaled. 
Magnitude scaling, and system parameters, are shown in table XIII - 2 and 
table XIII - 3. 
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Table XIII-2: Magnitude Scaling Sunnnary 

Physical Estimated Units 
Variables Maximum Values 
(Units) (Units) 

Yl 750 ft 

Y2 360 ft 

Y2 150 ft/sec 

Y3 350 ft 

Y3 150 ft/sec 

x 860 ft 

x 205 ft/sec 

·x 225 ft/sec 2 

f(Y3) 90 lbs/(ft/sec) 

Y2 - Y3 6 ft 

Y1 - 2Y2 20 ft 

h + Y1 (750 + 125) ft 

Table XIII-3: Parameter Summary 

Constant Parameters 

kl = 4550 lbs/ft 

k2 = 25300 lbs/ft 

mz = 45.28 slugs 

m3 = 20 slugs 

h = 125 ft 

-306-

Scale Computer 
Factors Variable 
MU/Unit M.U. 

1/1000 tYl/lOOO] 

1/500 tY2/5OO] 
l/~OO [Y2/200] 

1/500 lY3/ 5OO ] 

1/200 lY 3/
200 1 

1/1000 (x/1000] 

1/500 [X/500J 

1/500 [X/500 ] 

2 1/100 l f(Y3) J 
100 

1/10 lY2-Y3] 
1/20 10 

[Y;~ZY&J 
1/1000 r(h + Yl)/IOOO] 

Independent Parameters, ml and Xo 

414 ~ ml ~ 1423 slugs 

169 ~ x ~ 295 ft/sec 
- 0 



The following constraints must be programmed to account for the unidirectional 
behavior of cable tensions: 

Cable 2 cable tension = k2(Y2 - Y3) 

= 0 

Cable 1 cable tension = kl(Yl - 2Y2) 

= 0 

4. Scaled Equations 

Y2 ~ Y3 

Y3 > Y2 

Yl £ 2Y2 

2Y2 > Yl 

The scaled equations can now be written by substituting the scaled variables 
·from table XIII-2 into the origina 1 equations. 

Piston Equation 
k 

Y3 = m~ (Y2 - Y3) - f(Y3) (Y3)2 
~3 

The appropriate scale factor for Y
3 

is the same as that for Y3. Direct sub-

stitution r~3~.he sc~~ed r;~:~b~:ls int~o~:~oor~o~;o:~ er~;ott2n yields; 
ljooj = 20;;;3 t J b: j G aI 

Coefficients of the scaled variables are pot settings. Substitution of the 
parameters K2 and m3 indicate pot settings of much greater than 1 are required. 

To reduce rY~ -jettings /~2 a v)al[(;2<_ly~e equati{.:oma) rf~;)rr~:r2 as follows: 
1200J = 100 \2000m

3 
10 J - 1000 \m3 L~J [20 

Where 100 and 1000 are amplifier gains and termsin curved brackets are pot 
settings. 

The gain difference of the order of 10 is noted. This could imply that the 
the second term is poorly scaled. Recalling the physics of the problem, 
initially the piston velocity Y~ will be a maximum then decrease. The drag 
coefficient will initially increase from some minimum value. These quantities 
will not be a maximum together and therefore neither will their product. It 
will probably be safe to increase the scaling by a factor of five. 

Note that high integrator gains are required. This may indicate that if the 
magnitude scaling is satisfactory, time scaling is required. 
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~roceeding as before and since Yi may be scaled the same as Y2 the scaled 
equation becomes: 

[
'Y2d = kl rYl - 2Y~ _ k2 rY2 - y31 
20 5m

2 
t 20 20m2 t 10 J 

or 

Aircraft Equation 

Equations 4, 5, & 6 of section 2 may be combined to eliminate sin 8: 

yielding, 

x= ( y 1 - 2y 2)( h ~ y ) 
1 

The scaled equation becomes: 

&~6] = - (~~J [Y\~ 2Y2] 
x 

1000 [h + Yl 
1000 

To summarize the material just presented, the scaled equations are: 

Piston 

[;~oJ = 100 (2~~Om) t\~ Y~ - 200 (!~) ~ h~~3)J [;~JJ 
Carriage Equation 

Aircraft Equation 

~~J = - G:!J l\~ 2

Y2
] 

Algebraic Equation 

( 
2 2J 1/2 

y+h=x+h 
1 

I k2 ) fY 2 l~ Y 31 
100 \"200Om

2 
t :J 

Recall that the following constraints must be imposed: 

= 0 

Tension in cable 1 = kl(Yl - 2Y2) 

= 0 
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5. Time Scale 

Drawing the circuit diagram directly from the scaled equations would require 
large gains at the inputs to the integrators. This indicates a need for a 
time scale change which can be estimated from the maximum natural frequencies 
of the system. These frequencies, which can be obtained from equation 1-4, 
are: 

V2k sin 8 wna = 1 -----ml 

assuming sin 8 = 1 

wna = ~ /2 x 4550 
V 414 

= 4.7 rad-sec. 

Ulnc =-V 4kl + k2 = 31.0 rad/sec. 
m

2 

wnp = '\I k2 = 35.6 rad/sec. 

m3 

The natural frequency of the piston is approximately 5.7 cps and, if one con­
siders a frequency range of 0.02 to 3.0 cps as generally suitable for problem 
solutions on the analog computer, a time scale of l/~ = 1/10 seems to be a 
reasonable choice. Furthermore, the landing of the aircraft requires approxi­
mately 3 to 5 seconds of real time. Therefore, if ~ = 10 the solution on the 
computer would take 30 to 50 seconds which is quite adequate. In order to 
perform the time scale change in the computer circuit, each input to each and 
every integrator must be mUltiplied by l/~. 

6. Generating the Drag Coefficient 

In some cases where a function of this nature is required accurately, it may 
be advantageous to try an analytic approach to the curve or some part of it. 
For example, in this case, one could try an exponential type function for 
the last part and use a function generator to give the first part. The advan­
tagewould be that the function generator could then be used to plot an error 
function rather than the function itself. For our purposes, since the experi­
mental method used to determine the drag relationship was far less accurate 
than any computing technique, it is convenient to use a standard (10 segment) 
variable diode function generator for the entire curve simulation shown in 
Figure XIII-3. A scaled graphical representation of the drag coefficient 
curve,with reconnnended break points is shown in Figure XIII-6. 

7. Progrannning 

From the original equations the unscaled computer diagram can be drawn. This 
step aids the progrannner in setting up a neat program. More important, however, 
it can point out areas where equipment can be often be minimized. The scaled 
computer diagram is shown in Figure XIII-7. Note that the equations of con­
straint are mechanized using standard limiter circuits around amplifiers 08 
and 09. 
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Equipment savings can bereat~~ in the square root and squaring circuits 
since the sign of the input x does not change. Pot 29 in the feedback 

o'f amplifier 17 provides a convenient method for rescaling the multiplier out­
put. The output amplifier of the x2 card serves the dual purpose of a high 
gain amplifier for the x2 card and a summing amplifier for h2 • 
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ELECTRONIC ASSOCIATES INC. 

RESEARCH AND COMPUTATION DIV. 
Box 582, Princoton, N.J. 
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19 (f{V [~yth ] 
- ~D -.~t;? 

20 ItYY -[ ~, :_:d~ ] -t1.CO 

21 Ht; -[ y, -~ ][Xj, JA-'H!iJ "Y I"!> I()~ ,/~" -. P'll 

22 /tly r[ .2:-] /[ :1/ -1-), ] 
/0"" ~ .+. 9'£ 

23 /f(; - [ /D~" ]/ [y;,,::-] -. "t 
M6~3 
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8. Static Test 

The introduction of IC-voltages into the circuit permits the calculation 
of output and checkpoint voltages to be expected on the amplifiers and 
integrators. The IC-voltages (which will be chosen for convenience) need 
not have any physical significance. The outpu~and checkpoinrn 
will be calculated from the original equations, to ensure that errors 
have not been made either in the scaled equations or in the mechanization. 

Check Calculations 

Y3 

kZ 
- Y ) -

f(Y3) . Z 
A. = - (y ;-- (Y3) m3 Z 3 3 

kZ = Z5300 lbs per ft 

m3 = ZO slugs 

Let Y3 ZOO ft 

Yz = ZIO ft 

Y3 = 100 ft/sec 

then f(y3) = 7.5 lbs/(ft per sec) 
2 

and ")13 
Z5300 (ZlO-ZOO) _ L2.(100)2 Z53000 - 75000 =-- = 

ZO ZO ZO 

= 8900 ft/sec. 
Z 

and )73 
-=+4.45 
200~ 

MU at check point C OZ 

")1Z 
Zkl 

- ZY2) 
kZ 

(YZ - Y3) B. =-(Y mZ 1 mZ 
kl = 4550 lbs per ft. 

mZ = 45.Z8 slugs 

Let Yl 
::;: 440 ft 

and YZ ZOO ft per sec.j 

9100 Z5300 
then YZ 45.Z8 (440-4Z0) - 45.Z8 (2l0-Z00) 

1 
= 45.28 (18Z000 - 253000) 

- - 1567.68 ft per sec. 
Z 

and +0. 784MU at check point C 06 
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C. 

D. 

Yl = (x2 + h2)1/2 - h 

h = 125 ft 

222 
.x = (Yl + h) - h = 303.500 

and x = 551 ft 

x - -
2kl 
- (y - 2y) x 

ml 1 2 h + Yl 

Let ml = 500 slugs and x = 250 ft per sec.; 

then x 9100 
500 (440-420) 0.9754 

- - 355 ft per 
2 

sec. 

and ~iJOff -. 07lMU at check point C JO 

For the first derivatives chosen, the check points of inte­
grators 03, 07 and 11 should read 

C03 -.02M.U. 

C07 

Cll 

A typical set of computer results are presented in Figure XIII-B. The 
system parameters producing these results are extreme in that they repre­
sent system demands which lie outside the range of required system per­
formance. It is, therefore, most interesting in terms of system response. 
For these conditions, the tension in Cable 1 exceeds the working limit 
but is still below the maximum allowable cable tension specification. 
It is of interest to note that at the time of complete cable run-out, 
the aircraft is still in motion. A number of possibilities may arise 
at this point, i.e., either the system or the aircraft may be damaged 
or, perhaps, a successful landing without damage to either may result; 
however, the simulation ends at this point, since further study of the 
system response at cable run-out would, of course, require an expanded 
mathematical model and a more complex computer simulation. Nevertheless, 
with the existent model, adequate information has been obtained to con­
firm the original design philosophy, and to indicate satisfactory future 
system operation. 
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Figure XIII- 8: Typical Results 
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C. Example #2: Stability of the Molten Zone Refining Process 

In the production of transistors, it is necessary to obtain pure, single­
crystal germanium or silicon. The principal source of germanium is 
germanium dioxide, a by-product of zinc mining. It is obtained also 
from coal ash. The dioxide is reduced in a hydrogen atmosphere, and the 
resultant metallic germanium is cast into long rods. The purity at 
this stage is good but still is not sufficient for the manufacture of 
transistors. Further refining is necessary. 

Some manufacturers use the zone refining process which is illustrated 
in Figure XIII-II, to achieve the high degree of purity required. The 
rod is placed vertically in a special furnace filled with hydrogen. 
Starting at the lower end, a small length of the rod is heated to a 
molten state by using an R-F induction heating coil. As the coil is 
moved upwards, the molten zone, held together by surface tension, 
travels along the rod. The impurities in the germanium tend to collect 
in the molten zone and are removed to the top end. The process can be 
repeated until the desired purity is achieved. In practice, germanium 
with impurities of the order of one part in 109 is obtained, which is 
sufficiently pure for use in transistors. 

Questions which arise in implementing this refining process include: 
"Under what conditions should the process be conducted?", "What tempera­
ture, what diameter of rod and what length of molten zone will give 
the most efficient operation with stable conditions?" Obviously, if the 
molten zone is too long, the surface tension forces will be too small 
to hold it, and the liquid metal will flow away from the rod. If the 
molten zone is too small, the process will take too long. The shape 
of the rod formed below the molten zone must be regular, and similar 
to the original rod. These questions can be answered by considering 
the shape of the molten zone under different conditions. 

The objectives of this study are to derive and mechanize a mathematical 
model which describes the surface of revolution of a hanging drop. By 
considering the resultant curves, together with the necessary constraints 
of the molten zones (rod diameter, stable shapes, etc.) (1) in the re­
fining process, it will be possible to determine the most efficient and 
stable operating conditions for the process. 
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Figure XIII-II: Molten Zone Refining 
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Figure XIII-12: Geometry of Molten Zone 
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1. Mathematical Model 

The general equation for the shapes of liquid surfaces has been developed 
by many authors (2), and takes the form of the LaPlace equation 

where 

and 

p (1) 

p pressure difference across the surface membrane at any 
point 

major radii of cur vature at a point 

¥ = surface tension of liquid 

The coordinates of a point, P, on the surface can be expressed in terms of 
X and Y, as shown in Figure XIII-12. 

The radius of curvature, Rl , is given by the expression 

~ 2 
3 

+[~1 
-,: 

Rl = 
2 

(2) 

.Q....y 
2 

dx 

The radius of curvature, R
2

, must be normal to the surface and, as Plies 
on a surface of revolution, R2 must be equal to QP where Q lies on the 
axis OY. 

= I X cse Q I = 

or 

I 
1/2 

:;.X~[!=...:1:::......-:.+--=t,J::;~n::..2.....:Q:;.:J:....-_ 
tan Q 

-320-



R2 = X [1 + {t} t 
-.!!:l 

= x (3) 

1/2 

E.Y 
dx dx 

If the pressure at the bottom of a drop is due to the height of liquid, 
H, then the pressure at the point, P, above the bottom of the drop will be 

p = P g [H-Y] (4) 

Replacing Rl , R2 , and p in the LaPlace equation with their equivalents, 
we obtain 

E.Y 
dx 

+ 1/ 
2 

= 
Pg 

¥ 

Introducing the capillary constant, a, having the dimension of length 

a =~ 2 
pg 

the right hand side of equation 5 becomes 

2 LH-Y] 
a 2 

By substituting 

Y = ay, X - ax, H = ah 

(5) 

in equation 5, it can be reduced to dimensionless form and rewritten as 

= (6) 

2. Preliminary Considerations of the Problem 

Equation 6 contains two variables, x and y, and a parameter, h, which is a 
constant for anyone condition studied. The general problem is to plot x 
against y, for values of y in the range from zero to h. To do this, one 
could regard either x or y as the independent variable and represent it on 
the computer by time. It is prudent to consider the physical system and how 
the variables behave with respect to each other before deciding the best 
approach to mechanizing the equation. 

The equation represents the surface of revolution of a hanging liquid drop, 
and the kind of curves we expect to obtain are similar to that shown in 
Figure XIII-13. 
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Figure XIII-13: Typical Cross-Section of Molton Zone 
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For this problem, one is not interested in that portion of the results where 
y > h or x < x (part of the curve shown dotted). However, to obtain a solution, 
boundary condi!ions must be determined, and the only point of the curve at which 
values are known is the origin. Hence, although the region near the origin is 
of no interest, one must set up the computer solution using the values at the 
origin as initial conditions. 

If x is used as the independent variable, the initial conditions for y(x) are 

yeO) = 0 
and 

o 

and a computer circuit appears to be possibleo Hoever, in looking at Figure 
XIII-13, we note that at xc' dy/dx becomes infinite and the solution could not 
be completed. 

If Y is selected as the independent variable, which makes x a function of y , 
the initial conditi'ons are: 

x(O) = 0 

and 

Therefore, the use of y as the independent variable would be troublesome since 
it has an infinite initial value. 

Based on the above consideration, it would seem necessary to program the problem 
in two parts (Figure XIII-14). The first part would use x as the independent 
variable and stop at a reasonable value for dy/dx. At this point, the values of 
x,y and dy/dx would be recorded to be used as initial conditions for the second 
part of the solution which uses y as the independent variable. However, further 
analysis of the problem shows that by transforming equation 6, one can produce a 
more efficient solution to the problem. The(§yo-part programming description and 
mechanization can be found in the literature . 

x 
y 

~ 
dx 

. Y 

0 YI x xl 
0 2 

Y YI 
0 

(dX) _ 1 
dy - (*1 

\INITIAL 

X 

INITIAL 
CONDITIONS CONDITIONS 

Figure XIII-14: Scheme of Solution of Problem in two parts. 
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3. Revised Mathematical Model 

In this problem, our objective is to plot a family of curves referenced to a set 
of rectangular coordinates. The device which will produce these curves will be 
an x-y plotter, where the motion of a carriage will follow one coordinate, and a 
pen travel normal to the carriage will follow other coordinate. The dynamic res­
ponse of plotters normally is velocity limited. Since time is not a variable in 
our original equation (equation 6), we can introduce the constraint 

(7) 

where V is a suitable constant velocity vector for the pen of the x-y plotter. 
By fixing an appropriate value for VI we can be certain the dynamic response of 
the x-y plotter will not be exceeded. 

The relations between time and space derivatives are t 

~ 
d dt 

=:l y' =~=-
dx dx x 

dt 

and 
~' =(~'X dx)= (y" Y. x) 
dt dx dt 

which can be solved for y" 

y"= 
dy'/dt ddt { yl) ddt (i) x y - y x = =--= 

x X x .3 
x 

Substituting y' and y" into equation 6 yields 

x y - y x [( y \2_
J 

3/2 i [1 + (y Ix) 2 ] 
• 3 = 2 (h -y ) I + *) x x 
x 

(8) 

or 

x y - y x = 2(h-y) (9) 

which contains both x and y 

Differentiating equation & (x2 + y2 = V2) with respect to time we obtain 

x x +(t X YJ= 0 (lOa) 

and 
x = - ~ Y (lOb) 

x + The dot notation is used for derivatives with respect to time, and the prime 
notation is used for derivatives with respect to x or y. 
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or 
ij = -

o 
X •• 
-;-x 
y 

Substituting equations 7 and lOb into equation 9 yields 

xy - y ('-~ ) y = 2 (h - y) v 
3 

- ~ v 
2 

or . 
y = x (2[h-yJV - y) 

x 

(lOc) 

(11) 

Similarly, an equation for x can be obtained by substituting equations 7 and 
10c into equation 9 

x· = -y (2 [h-~ V - ! ) (12) 

To define the system completely, the Yo' Yo' 
be determined. 

X in terms of y , and y " must 
000 

We know from the geometry of the drop that x o ' Yo' and Yo' are zero and Yo" is h. 

Since Yo 
= - = 0 x 

o 

then y = 0 which can be substituted into equation 7 to determine the initial 
o 

value of x, x = V 
o 

These initial conditions now can be used to determine y " since 
o 

y " 
1 C· x Yo x ) = -- -

0 x 3 Yo 0 0 

0 

y " 
1 ( V 0) =- Yo -

0 V3 

and 
V

2 
" = V2

h Yo = Yo 
. 

then y 
o o. 10 

( V2h) = 0 x =-;r- Yo ':' -
0 V 

0 

Now that the initial conditions are available, equations 11 and 12 can be 
mechanized readily. 

l~e initial value of y/x can be shown by L' Hospital's rule to be equal to Vh. 
The initial value for this division circuit can be programmed most effectively 
by using a Ilsteepest descents" division circuit. 3 
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4. Scaling and Scaled Voltage Equations 

From Figure XIII-3, the maximum value of x seems to occur at the origin. Since 

both derivatives can not exceed V, which must be defined. A reasonable value of 
V, O.S units/sec, was selected based on the velocity limitations of the x-y plotter. 

The maximum value of x is unity since values of X greater than "a" are of no 
physical significance (X = ax). 

The maximum value of y can be obtained directly by specifying h, since y < h.has 
no meaning. From the literature and from experience with the physical system, it 
was assumed that "h" would not exceed four. 

The following scaled table (Table XIII-6) can be used to summarize magnitude scaling. 

Table XIII-6: Magnitude Scaling Summary 

PHYSICAL ESTIMATED SCALE COMPUTE R VARIABLE 
VARIABLE MAXIMUM FACTOR 
(Units) VALUE MIT/Unit M.U. 

(Uni ts) 

h-y 4 1/4 r¥l x ~ 2 2 [2 xl 
y ~ 2 2 t 2 y] 
X 1 1 [x1 
y 4 1/4 (+1 
y/x 10 1/10 t y ] 10 x 

We can now derive the scaled equations 
(13) 

(14) 

A convenient time scale factor, ~, for the simulation, based on potentiometer 
gain considerations, is ten. The computer diagram for this simulation is shown in 
Figure XIII-IS. 
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5. Static Check 

The following parameters were selected for the static test run: 

v = 0.500, h = 3,,000 

The following values were used for initial conditions: 

y = 0.15, (therefore with V = 0.5, x = 0.476) 

x = 1.0, y = 2 

Substituting these values in equation 11 yields 

{ 0.15001 Y = 0.4760t2(Oo5) (3-2) - 1.0000 1 
= (004760) (0~8500) = 0.4040' 

which can be multiplied by 200/~ to obtain the check amplifier output * for ampli­
fier 10 

Similarly for equation 12 

x = - (0.15)(0.850) = - 0.1272 

and the check amplitier output ± for amplifier OZ is 
J 

L-2xl= (2) (-.1272) 
~ 10 +.0254MU 

The Potentiometer Assignment Sheet is given in Table XIII-7, and the Amplifier 
Assignment Sheet in Table XIII-8. Calculated values for static test outputs 
are included in both figures. 

60 Results 

Curves obtained from method B for values of h = 2.5, 3.0, 3.5, 4.0 are shown in 
Figure XIII-16. These curves then are used to determine the zone shape for a 
given value of h, rod radius, and capillary constanto Stable zones were obtained 
for h 2: 3.5. 

f With the check amplifier function switch in the OUT position. 
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ELECTRONIC ASSOCIATES INC. 

RESEARCH AND COMPUTATION DIV. 
Box 582, Princeton, N.J. 

TR-48 POTENTIOMETER ASSIGNMENT SHEET 

POO-P29 

DATE _____________ _ PROBLEM ______________________ _ 

SETTING 
STATIC 

SETTING 
J 

POT PARAMETER CHECK POT 
NO DESCRIPTION STATIC OUTPUT RUN NOTES 

NO 
CHECK VOLTAGE NUMBER I I h=2.5 

00 ~~ .0500 .0500 ~=10 00 

01 2 Xo 0.952 .0000 01 I 
( 

02 1/~ .1000 0.100 02 

03 03 j 
04 04 ,I 

05 vh/10 .0150 0.125 05 lr 
06 l/G 1.000 .1000 06 )-

07 YO/4 0.500 .0000 07 If 

08 1/~ 0.100 0.100 08 
r 

09 2yo 0.300 .0000 09 
I 

10 1/8 B .0125 .0125 10 I 
I 

I I h/4 0.750 0.625 II 

" 
12 4 vIS 0.400 0.400 12 

13 13 r' 

14 Static Test .0500 .0000 14 L
J 

15 15 r' 
16 16 II 
17 17 ) 
18 18 I 

19 19 I 
20 20 

21 21 "-I 

22 22 " 

23 23 ~I 

24 / 24 r! 

25 25 L, 
26 26 J , 
27 27 L 
28 28 J 
29 29 
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ELECTRONIC ASSOCIATES INC. 

RESEARCH AND COMPUTATION DIV. 
Box 582, Princeton, N.J. 

TR - 4 8 AMPLIFIER ASSIGNMENT SHEET 

AOO- A23 
DATE ________________________ __ PROBLEM ______________________ _ 

I 
STATIC CHECK 

AMP OUTPUT 
NOTES 

NO. FB VARIABLE CALCULATED MEASURED 

CHECK PT. OUTPUT CHECK PT. OUTPUT 

00 INV + 2 *- +0.952 
--. -

01 INV - 11 -.085 10 

02 INT - -2 *- -.0254 -0.952 

03 INT + x -.0476 +1.00 

04 ~ .085 10 

05 INV - x -1.00 

06 HG y/10 -.015 

07 1 . 
INT +-y -5.0 +.015 Remove .1~ plug In ~. 

08 INV 
1 . 
-~ 10 x -.015 

09 HG -2* ..JL 10 -.0808 

10 INT + 2y -.0808 +0.30 

II 
INT -y/4 +.0375 -0.50 

12 ~ -0.250 - ~ 

13 HG € -0.500 

14 HG € +0.500 

15 
- x € -0.500 

HG 

16 INV 2y -0.300 -
17 HG - 2y ~/10 -.0254 

18 

19 

20 

21 

22 

23 

M653 -330-



Figure XIII-16: Computer Results 



D. Example #3: Transient Behavior of a High Speed Tunnel-Diode Switching Circuit 

In the design of high speed switching circuits, such as one might find in a modern 
digital computer, experimentation with the actual circuit is possible but extremely 
difficult. The experimental difficulties arise in the measurement of circuit be­
havior (wave forms, etc.) under high frequency operationo Frequencies, such as 
those obtained from a digital clock, range up to 109 cps. Therefore, analysis and 
computation are desirable means of evaluating proposed high speed circuits. 

This study deals with the analysis and simulation of a proposed tunnel-diode 
circuit which is shown in Figure XIII-17. For design purposes, a dynamic 
analysis "vhich takes circuit reactances into account is necessary for at least 
two reasons: 

TOI 

V in V out 
----'Vvvvvvv---+--- - - -1 LOAD 

TD2 f 
v-

Figure XIII-17: Simplified Schematic for 
Tunnel-Diode Switching Circuit 
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1. A knowledge of the switching time is necessary to determine the 
maximum clock frequency (i.e., the maximum rate of information 
transfer) at which the system can be operated. 

2. The circuit may prove unstable and break into oscillations. 

Both the stability and the' switching time will depend primarily on the inevitable 
circuit reactances. The determination of the maximum clock frequency and the 
stability limit of the circuit are the objectives of this study. The character­
istic curve of a typical tunnel diode(s) is given in Figure XIII-18. Note that 
the slope is negative over the greater portion of the operating range (from about 
60 to 300 millivolts). The existence of this negative resistance region means 
that the equilibrium described in the preceding paragraph will be unstable. A 
very slight disturbance will upset the symmetry described above, causing a very 
much larger voltage to appear across one diode than across the other. This sen­
sitivity to small input disturbances enables the circuit to function as a high­
gain, high-speed switch. 

Assume V+ and V_ are initially zero and that V+ gradually V+ gradually increases 
while V_ decreases, such that V+ + V_ = O. Then the operating point of each 
diode will move from the origin in Figure XIII-18 along the characteristic curve 
toward the peak. The voltage at the junction will remain zero, as before. After 
the peak has been passed, the voltages and currents for the two diodes should re­
main identical (by symmetry), and the voltage at the junction should remain zero. 
However, since the diodes are now in the negative resistance region, this equili­
brium will prove extremely unstableo 

Suppose, for instance, that the circuit is unbalanced by a small positive voltage 
at the input terminal. Then tunnel diode #2 will have a slightly greater voltage 
across it than tunnel diode #1 and, as the bias voltage increases, tunnel diode 
#2 will pass its peak first. Further increases in the voltage across TD2 will 
result in a decrease in the current through it, and, hence, a decrease in the 
current through TDI as well. Since TDI is still in its positive resistance re­
gion, a decrease in its current will decrease its voltage drop, increasing the 
voltage drop across TD2 (since the tunnel diodes are acting as a voltage divider, 
and the sum of their voltage drops must equal 2V+). It follows that TD2 will 
move rapidly through its negative resistance region, at a speed limited only by 
circuit reactances, and stabilize somewhere in the positive resistance region 
above 300 millivolts, while TDI stabilizes in the positive resistance region below 
60 millivolts. 

Since most of the voltage drop between the two bias sources appears across TD2, 
it follows that the voltage at the junction (the output voltage) will be positive. 
A positive input voltage will, therefore, produce a positive output voltage. The 
output voltage will be of the same order of magnitude as the bias voltage, V+, 
while the input voltage need only be large enough to overcome any inherent imbalance 
in the diode characteristics. The input voltage thus can be made very small, and 
the gain of the circuit is limited only by the closeness of the match between diode 
characteristics and between the positive and negative power supplied. If the input 
and output voltages are equal in magnitude, as in the case with cascaded logic ele­
ments of similar design, high gain means that very large resistors can be used, re­
sulting in very large fan-in and fan-out figures. 
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In high speed logic and arithmetic ~ircuits, the voltages V+ and V_ will be out­
of-phase alternating voltages with approximately sinusoidal wave-shapes. D-C 
levels will be superimposed on these sinusoids and, in most applications, this 
bias will just equal the amplitude of oscillation, assuring that the bias voltages 
do not change signo The alternating bias voltages then will serve as a "clock", 
supplying the necessary timing signals for high-speed arithmetic and logic. An 
output can be obtained only during that part of the bias cycle when the bias vol­
tage is large enough to switch one of the diodes into its negative resistance re­
gion. 

The attractiveness of this circuit for digital applications lies in the fact that 
the input need only be large en pugh to unbalance a symmetric circuit. If all 
componenets were perfectly matched, the slightest input disturbance would un­
balance the circuit in the proper direction and the theoretical gain would be 
infinite. In practice, the gain will be limited by component tolerances. An 
estimate of the gain(or, equivalently, the fan-in/fan-out capability) of the cir­
cuit can be made from a static analysis of the tunnel-diode characteristic and a 
knowledge of circuit tolerances. Such an analysis has been made by Chow (7) who 
predicted large gains for closely matched diode. 

The equivalent circuit for the system, with circuit reactances and external loading 
taken into account, is given in Figure XIII-19. The principal reactances involved 
are lead inductance and case inductance (which may be lumped together), and diode 
shunt capacitance. Provision is also included for coupling the leads together 
with mutual inductance which would correspond to dressing the power supply leads 
close together during construction. A moderate amount of coupling proves to have 
a beneficial effect on switching time when the circuit is operated at high fre­
quencies. 

Figure XIII-19: Equivalent Circuit Showing Reactances 

1. Mathematical Model 

The equations describing the system are given below. These equations are straight­
forward applications of Kirchoff's laws and the known properties of resistors, 
capacitors, and inductors G They may be written down immediately upon inspection 
of Figure XIII-19. 
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Equations 1 and 2 are Kirchoff voltage equations for the two major loops. 
Equation 3 is simply the statement that the bias or "clock" voltages are out­
of-phase sinusoids with d-c levels superimposed. Equations 4 and 5 state the 
basic volt-ampere relation of a capacitor, and 6 and 7 are Kirchoff current 
equations. Equations 8 and 9 state the characteristic relation between voltage 
and current in the tunnel diodes (see Figure XIII-18). On the computer, these 
curves will be represented by function generators. Equations 10 and 11 are, of 
course, statements of Ohm's Law. 

System Eguations: 

VI = Ilrl + LIIl MI2 + Vn +V (1) 
1 

out 

Vz = IZrZ + L212 MIl + Vn - V (2) 
2 

out 

VI -V2 = Enc - A sin wt (3) 

0 1 
Vn = - IC (4) 

1 
C

l 1 
. 1 
Vn = IC (5) 

2 
C

2 2 

Ie = II -In (6) 
1 1 

Ie = I - In (7) 
2 2 2 

ID = f(V ) (8) 
1 Dl 

ID = f(V ) (9) 
2 DZ 

V = (II 12 + Iin)~ (10) out 

V. - V out 
I. ~n 

(11) 
~n R. 

~n 

For the purpose of this simulation, equation 11 was omitted and replaced by the 
assumption that the input current lin was constant. This simplification was made 
so that the results could be compared directly with a digital solution which also 
made this assumption. 

For simulation purposes, equation (3) is mechanized readily from its differential 
equation. It may be differentiated twice to obtain 
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and 

where/ 

dv 
dt 

= - w A Cos wt 

v = VI - Enc = -

Therefore, the mechanization of the oscillator equation 

with the initial conditions 

V(O) = a 

and 

can be used to simulate the clock sinusoid. 

2. Scaling 

(12) 

(13) 

(14) 

Since this switching circuit is part of a much more elaborate system, the 
system specifications can be used in estimating maximum values. In this case, 
system specifications call for the clock voltages, VI and V

2
, not to exceed 

500 mv and the current drawn through these inputs, II and 1
2

, to be less than 

50 rna. By consulting Figure XIII-18, it is obvious that the tunnel diode was 
selected to meet these specifications. Therefore, the maximum values of Inl 

and ID2 are also 50 mae Since the capacitors paralleling the diodes may be called 

upon to provide the entire current path, ICI and IC
2

, if the diodes do not conduct, 

their maximum currents are also 50 rna. As seen in the figure, the maximum possible 
diode voltages, Vnl and Vn2' are 500 mvo 

The maximum values of the current derivatives can be estimated directly from 
equation I and 2 after the system parameters have been defined. The parameters 
are summarized in Table XIII-19 and the estimated maximum value of i l and i2 is 
200Oma/ns. 

Now that all maximum values have been determined, the necessary scale factors can 
be summarized, as shown in Table XIII-IO. This study was carried out on a 
transistorized,TR-48 analog computer. The scale factors were determined by 
dividing the maximum values into a one unit reference level. 
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3. Scaled Equations 

From the above information, the following scaled voltage equations can be ob­
tained: 

(15) 

. 

[~~oo] = (4i) [[V ~~] - [:~~] -[:~J + (4M) G~J -[ ~~ ][~~]} 
(16) 

[VD1] 1 [IC1] 
500 = 10 (100 C

1
) 50 (17) 

. 
[VD2] 1 [IC2] 500 = 10(100 C2) 50 (18) 

(ICll =[ II ] _ [ID1] 
50J 50 50 

(19) 

[I~] =[ ~J- [IiJ (20) 

and 

[ V ~~~] =f[ ~~ 1 -[ ~ ] + ( ~~n) J(l~~) (21) 
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Table XIII-9: Summary of Parameters 

r 1 = r 2 = 3 ohms 

~ = 8 ohms 

C1 = C2 = 10- 2 nanofarads 

L1 = L2 = 0.4 nanohenry 

M ~ ~L1L2 Try M=O for first run a Probably maximum value 
around 0.2 nanohenry 

I. = 1.0 mae l.n 

A = 130 millivolts 

Edc = 130 millivolts 

f = 150 megacycles/second = 0.15 cycles/nanosecond 

to ::: 2 rr f = 0.9425 radians/n.s. 

Table XIII-10: Summary of Variables 

Physical Estimated Units Scg,le Factor Computer 
Variable Max Value Machine Units/ Variable 
(Units) (Units) Unit Machine Unit 

VD1 , VD2 , V1 500 mv 1/500 L~o ] 
V2 

ID1' ID2 50 ma 1/50 [ ~g ] 
1

1
, I 50 ma 1/50 l !o 1 2 

. . l 10~O ] II' 12 2000 maIns 1/2000 

I C1 ' IC 2 50 ma 1/50 L Ie 1 50 

The oscillator equations can be rewritten as 

r l V I 

---x- = 1 Sin tOt· = L ..i 

to program (1 Sin tOt) directly. 
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+1' 

Sin wt 

- Sin wt 

A 
50aJ 

EOC 
500 

The scale factors for V, VI' and V
2 

are 1/500 m.u./mv); therefore 

and 

4. Time Scale 

v 
- 50.0 

(22) 

(23) 

The simulation must run considerably slower than the physical system; therefore, 
time scaling is required. A time scale factor 

5 seconds of machine time 
~ = nanosecond of problem time 

was selected to obtain reasonable potentiometer settings. Since the maximum 
clock frequency, w (as shown in Table XIII-9) is approximately one rad/ns, the 
value of ~ selected results in a computer frequency (w ) of 

w 
w=-= 

~ 
i = 0.2 rad/sec of machine time 

A frequency of this magnitude is ideal for the analog computer, and insures that 
the frequency limitations of all components will not be exceeded. 

5. Programming 

The mechanization of the scaled equations is shown in the computer diagram 
of Figure XIII-20. Their associated potentiometer and amplifier sheets are con­
tained in Tables XIII-II and XIII-12. 

Two items of interest should be noted: 
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Figure XIII-20: Analog Computer Circuit Diagram 
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a) The programming of the diode function generators (DFG) which 
simulate the diode characteristic curves 

b) The algebraic loop formed between amplifiers 4 and 5. 

6. Algebraic Loop 

A simple unscaled circuit representation for this algebraic loop is 

el------I 

M 

whose overall loop gain, K, must be less than one for stability. Since 

K = 

which is always less than one, the loop is stable (Reference 8). Note that the 
loop gain of an algebraic loop is independent of scaling. 

7. Generating the Characteristic Curve 

The tunnel-diode characteristic in Figure XIII-18 presents a problem in function 
generation no matter which simulation method is used. 

On an analog computer, the best approach is the straightforward use of a standard 
diode function generator (DFG) which uses biased diode networks to approximate a 
curve by straight-line segments. On the TR-48 variable-breakpoint DFG, ten seg­
ments are available. The breakpoints (corners) of the curve may be varied so as 
to group many short straight-line segments together where the graph is straighter. 

Inspection of the curve (Figure XIII-18) shows that the slope at the origin (which 
must be set by the "center slope" potentiometer in the DFG) is very great o Fur­
thermore, the function curves vary sharply (i.e., has a large second derivative) 
near the first peak. This indicates that very great changes in slope will be 
necessary at each breakpoint. Since variable DFG's are limited with respect to 
the slope change obtainable at a single breakpoint, it is advisable to tabulate 
the necessary slope changes to see if the slope capability of the DFG is exceeded. 
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This tabulation appears in Table XIII-13. The function is tabulated at ten 
breakpoints (which is the number of breakpoints available on the TR-48 DFG) 
and two endpoints (0 and .95 M. U. ). Subtraction and division yield the slopes 
in column 3, and a second subtraction yields the slope changes in column 4. 

The TR-48 DFG is designed to produce a maximum center slope of ± 2 units per 
unit and a maximum slope change of ±.l unit per unit' at each segment. Inspec­
tion of column 4 indicates that these figures are exceeded by a factor of over 
8 to 1 at some points. Therefore, the DFG gain must be increased. This can be 
done by using a potentiometer in the feedback path of the DFG output amplifier. 
If the potentiometer is set to 1/10, then the maximum obtainable slopes become 
20 units per unit center slope and 10 unit per unit slope change per segment, 
which is more than adequate to generate this curve. 

The fact that this "slope amplification" was necessary indicates that this is a 
difficult function to generate accurately with straight-line segments. Accord­
ingly, one would expect the DFG to exhibit a much larger error in generating 
this function than would be the case with functions that curve less sharply. A 
rough calculation indicates that the maximum error is about .005 units (0.5% of 
reference). Since the original curve is empirical, and depends upon the 
particular tunnel diode selected for measurement, this accuracy is sufficient. 

8. Static Check 

For static check calculations, convenient values are selected for all integrator 
output signals (in this case II' 1

2
, VDl' and VD

2
) , and for the driving functions, 

VI' V2 and lin. These values may be chosen arbitrarily, but they should be small 

enough to avoid amplifier overloads, and large enough to provide amplifier output 
signals that can be measured with reasonable accuracy. The values chosen were: 

II +25 rna. 

12 = +25 rna. 

VI +50 mv. 

I = +1.0 rna. in 

VDl = 

VD2 = 

V
2 

+50 mv. 

+50 mv. 

-V = -50 mv. 1 

Parameter values are the same as those for the first run. The values for all 
variables may be calculated from equations 1-10. These values are given below. 

+49.2 rna. +49.2 rna. 

24.2 rna. -24.2 rna. 

V = +8 mv. out 
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Table XIII-II: TR-48 POTENTIOMETER ASSIGNMENT SHEET 

POO-P29 

DATE b/,/h3 PROBLEM Tu~blE"= DI()DE 
I I 

SETTING STATIC 
SETTING POT PARAMETER CHECK POT 

NO DESCRIPTION STATIC OUTPUT RUN NOTES 
NO CHECK NUMBER I 

00 2 LL/S .160 to.166 00 

01 2 L l./5 ·160 -0.13+ 01 

02 2M/5 0.000 0·00 02 

03 2M/5' 0·000 0.00. 03 

04 1/10/3 .020 -0.20 04 

05 II RL .125 -0.02 05 

06 r IN /50 .020 +0.20 06 

07 l/IOOC l (] .200 -0.97 07 

08 1/100 Cl/i .200 +0.97 08 

09 .640 -6.40 STATIC CHECK I.C. 09 

10 w/;9 .188 -1·88 10 

I I 4//(8 ·188 -\ ,20 II 

12 4-1/3 ·800 +0,83 12 

13 4/(3 ·800 -0·67 13 

14 14 

15 rl/lO ·300 -1.50 15 

16 r)./(o ·300 +1.50 16 

17 A/SOO ·250 +1.60 ,260 17 

18 Eoc /500 ·260 -2.60 18 

19 19 

20 '150 I l (0) .500 -5.00 20 

21 ,/so 112 (0) I .500 +5.00 21 

22 lJsoo VOl (0) ·100 tl.OO 22 

23 '/soo lVpl. (0)' ·100 -1.00 23 

24 24 

25 '110 .100 ..,. o.9R / He Rf. R~£.') D1=G GAIN 25 

26 '/10 ./00 -0.98 / tVCJfE Il()£'\ f) t="G GA ItJ 26 

27 27 

28 28 

[)< SWtTCH # I LEFT 29 

M654 
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6/1/63 

ELECTRONIC ASSOCIATES INC. 
RE5EARCH AND COMPUT AllON DIV. 

Box 582, Princeton, N.J. 
TR - 48 AMPLIFIER ASSiGNMENT SHEET 

AOO- A23 TUNNEL DIODE DATE ____________ _ PROBLEM __________ _ 

STATIC CHECK 
AMP OUTPUT 

CALCULATED MEASURED NOTES 
NO. FB VARIABLE 

DERIV. OUTPUT DERIV. OUTPUT 

00 PART OF DFG Use input 
Rp!=:i!=:tor!=: with ()6. 

01 
H +ID,/SO +.984 

02 I +t +.020 +1.000 

03 - -1 sin UJt -.640 

04 
. 

H -1,/2000 +.1037 
. 

O~ H +1
2

/2000 -.0837 

06 I -1 cos Wt +.120 -1.000 

07 I +1 sin Wt +.188 +.640 
Use Input 

08 PART OF DFG Resistors with OS 

09 H - IDt'j50 -.984 
" 

10 - -1,/50 -.SOO 

II - +12/50 +.SOO 

12 L +Ic,/50 -.484 

13 L -Ic?/SO +.484 

14 I -VD1/SOO +.968 -.100 

15 7 +VD2/S00 -968 +.100 

L V1 -Y2 
+.100 16 - =--

SOO SOO 

17 H -VOUT/SOO -.016 
• 

18 - V2/S00 -0100 

19 

20 I +,I1/SO -.830 +.SOO 

21 f = --I') /SO +.670 - .SOO 

22 ! , 
":''=-.~~'''''''--'''' -, 

23 
.-

M653 -34S-:-



I 
W 
+' 
0'\ 
I 

INPUT 

G~oJ 
, 

0 

.035 

.085 

0.110 

0.145 

0.285 

0.385 

0.620 

0.790 

0.855 

0.900 

0.950 

Table XIII-13: Set-Up Table for Variable DFG 
units 

OUT/?'U:r SLOPE IN un~t - Change 

GgJ ~[:~ J in 
Slope 

~G~o] 
Units/unit 

0 

0.581 1.66 

0.934 0.71 0.95 

0.993 0.24 0.47 

0.936 0.16 .08 

0.367 0.41 0.25 

0.169 0.20 0.21 

.089 0.23 .03 

0.156 .04 0 .• 17 

0.320 U.25 0.21 

0.675 0.800 0.55 

1.200 



The derivatives may be calculated from equations 11, 12, 4, and 5. These are: 

. 
VDl = VD2 = -2420 millivolts/nanosecond 

II -207.50 milliamps/nanosecond 

12 = -167.50 milliamps/nanosecond 

All variables that have been calculated now can be translated into amplifier 
output units. These units appear on the amplifier assignment sheet (Table 
XIII-12). They may be checked against values calculated on the dircuit diagram 
(to check the programming and scaling), and later checked against actual measured 
units on the computer (to check the patching and the functioning of the com­
ponents). For integrators, the checkpoints should also be calculated and mea­
sured. (The checkpoint of an integrator is minus the sum of its input units. 
It may be read out by patching the summing junction of the integrator temporarily 
to the summing junction of a summing amplifier that is not being used in the pro­
blem. These calculated values are also tabulated in the amplifier assignment 
shee t. 

The initial condition inputs marked "Test" are for static test purposes only and 
not for the actual run. They should be removed prior to the first run. 

Note that the static test value of the mutual inductance, M, is zero. This value 
was chosen to break the algebraic loop in the static test mode since, otherwise, 
it would be very hard to troubleshoot. However, this static test value does not 
check the algebraic loop itself and a supplementary test should be included with 
M ~ O. For this supplementary test, we may as well assume that the artificial 
initial conditions on voltages and currents are zero except for VI and V2 since 
this part of the circuit has already been checked by the main static check. 
Equations 1 and 2 then become: 

VI Ll II MI 
2 

-V = L 
2 2 12 - MI 1 

Solving by determinants: 

II 

Vl L
2 

- MV2 
12 

-LlV 2 + MV 1 
= M2 = L L - M2 LlL2 - 1 2 

If we let VI = 50 mvo, V2 = -50 mv., Ll = L2 = 0.4 nanohenry and M 
henry, the il = i2 = +250.0 milliamps/nanosecond. 

0.2 nano-

The output of amplifier 04 should be -il/200 = - .125 M. IU., and the output of 
amplifier 05 should be +.125 M. U. 
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9. Results and Conclusions 

The switching transients and output waveshpaes for constant input current are 
shown in Figures XIII-21 and XIII-22. Note, in particular, that at 300 megacycles 
the output voltage goes through an initial oscillation before switching. The 
output is high for only a short period of time late in the bias cycle. At 150 
megacycles, the output rises much more sharply and gives a good waveshape. Opera­
tion at 300 megacycles is possible, but marginal. Further experimentation 
with the model indicates that for reliable operation with sufficiently large 
fan in/fan out capability, the circuit should not be operated above about 200 
or 250 megacycles. 

200 

100 

0 

200 

100 

0 

f= 150mc 

0 2 3 4 5 6 7 
time - nanoseconds 

Figure XIII-2l: Output Waveshape of Switching Circuit at 150 Megacycle 
Clock Frequency 

f = 300 mc 

0 2 3 4 5 6 7 
time - nanoseconds 

Figure XIII-22: Output Waveshape at 300 Megacycle Clock Frequency 
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It is significant that a preliminary pencil-and-paper analysis indicated that the 
system ought to operate at frequencies up to 1000 megacycles. As shown, however, 
a circuit designed to operate at this frequency would not function properly and 
would be extremely hard to troubleshoot due to the circuit loading of the measur­
ing device s. 

Of course, on-line devices are available for producing graphical readout from a 
digital computer. Some of Herzog's graphical results were obtained by oscillo­
scope photography. Although this method eliminates the tedium of point-plotting, 
it is messy and time-consuming and offers limited resolution. Perhaps the best 
form of readout, and certainly the most convenient, involves the use of a digital­
to-analog converter and an analog X-Y plotter. While this method is acceptable, 
it requires expensive conversion equipment to translate the data into analog 
voltages for plotting. Such conversion equipment is unnecessary with the TR-48 
computer since the signal is an analog voltage in the first place. 

Since only about half of the computing capacity of the TR-48 computer is used, 
the simulation easily can be expanded to take additional effects into account. 
Herzog's equations assumed a constant current input and ignored the fact that the 
load is not purely resistive. These simplifications could easily be removed on 
an analog simulation by addition of a few more amplifiers and potentiometers. On 
a digital computer, any additional complexity in the equations would increase the 
running time. 

An attractive alternative, for example, would be to simulate an additional tunnel­
diode circuit on the analog computer and feed the output of the first into the 
second. This would enable the designer to determine how flat the output waveshape 
of the first circuit would have to be in order to trigger the second successfully. 
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CHAPTER XIV 

FACTORS IN PLANNING AND OPERATING AN ANALOG LABORATORY 

A. Introduction 

In establishing an analog facility, a number of important decisions and 
choices must be made. The purpose of this chapter is to comment on the 
principal factors that must be considered and to make appropriate sug­
gestions based on the experience of Electronic Associates, Inc., and 
others. 

B. Justification for an Analog Facility 

The major justifications for obtaining analog computers are both technical 
and economic. The technical justification is, in a broad sense, based on 
solving problems whose solution can be obtained only via electronic compu­
tation. The cost justification must answer the question, "Will the 
computer provide needed information more efficiently, effectively and 
economically than any other method currently available?" 

In formulating a cost justification, one must realize that the efficient 
use of analog computers will decrease design and construction costs and 
increase productivity of new and existing processes. These are long 
range factors, but their consideration reduces the overall cost of an 
analog facility if one adopts a far-sighted viewpoint. 

Additional justification factors are 

1) Utilization: Although technical applications exist, are 
they sufficient in number to justify a computer purchase? 
Can my problems be solved more economically by renting 
time at a computation center? 

2) Computation Time: When solution speed is an urgent factor, 
an analog computer may provide information sooner than other 
methods even though, under circumstances, it might not be the 
only or least expensive method of solution. 

C. Choice of Analog Equipment 

The choice of equipment involves not only the size of the computer but 
the relative numbers of each component. Although the selection must be 
based on specific requirements, typical applications in related areas are 
frequently helpful in providing guidelines. For example, in aircraft 
problems, trigonometric resolvers usually are required, while they seldom 
are found in a computer in a chemical facility. In chemical engineering 
problems, however, log function generators are particularly important 
components. The equipment requirements for a number of small problems 
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(less than twenty amp1ifiers) is shown in Table XIV-l (2). It 
can be used to obtain insight into component requirements for particular 
applications and estimates of t~ ratio of linear to nonlinear equipment 
requirements. 

As problem complexity and size increase, computer facilities, in turn, 
have grown rapidly in size, speed and flexibility as shown in Figure 
XIV-l (3). More specific illustrations of the size ~f ~etr~-che~ical 
analog facilities are shown in Table XIV-2 (4) and WLlllams estLma~e 
of an analog facility is contained in Table XIV-3 (5). The latter Lllus­
tration includes computer personnel, which will be discussed later. 

These illustrations also point out the importance of obtaining basic 
computer equipment which has the flexibility of adding more equipment or 
making modifications. Equipment should incorporate provisions for both 
electrical and mechanical expansion. 

D. Buildings and Floor Space 

The size of a computer installation will, of course, dictate the size of 
the laboratory required. It is necessary to provide adequate space behind 
the equipment for service access, and in front of the equipment for the 
usual recorders and plotters. Additional space should be allotted for 
chart-examination tables, a station for the convenient patching of panels 
and storage space for panels. Either in the laboratory or immediately ad­
jacent to it should be a shop area for the servicing of equipment. Nearby 
should be the offices of staff members. 

Of prime importance in the laboratory is adequate electric power; 50KW 
is typical for vaccum tube computers. The power requirements of transistor­
ized computers are much less, wnich also reduces air conditioning or cooling 
requirements. For example, two transistorized PACE TR-48 Computers (96 
amplifiers) drain less than 300 watts and require no air conditioning, 
while a PACE 23l-R vaccum tube computer (120 amplifiers) has a 6.5KVA 
power requirement, necessitating air conditioning. 

In addition, power is required for tools, lighting, cooling or ventilation, 
and for other purposes. Ordinarily, three-phase wiring is used for effi­
ciency of distribution; most computers, themselves, are single phase, however. 
Power requirements for the apparatus will be specified by the manufacturer. 
It is also important that the line voltage be reasonably stable and free 
from spikes or transients. If transients are being caused by some nearby 
apparatus such as an arc welder or a large motor, it may be necessary to 
install independent transformers and perhaps voltage regulators. 

Ventilation and cooling for the equipment will be specified when needed. 
Exhausting the heat from the equipment and from the room is extremely 
important; the means for doing this should be carefully planned. 

Floor loading also should be considered in terms of the weight of the 
equipment and the construction of the building that will house it. 

More detailed information about physical facilities is available in the 
literature (6), and from computer manufacturers. The physical descrip­
tion .. sheet shav n in Figure XIV-2 is typical of manufactul!'ers literature. 
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Summers Function Poten- Func-
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<: 20 4 6 1 2 X 14 CD 

t%j 21 4 14 3 5 X 1 21 
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27 4 14 2 4 X 15 I-' 
CD 

28 11 20 1 5 X S 
en 

29 4 3 1 1 X 3 
30 3 3 1 1 X 5 
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Table XIV-la: 

Some Example Problems Suitable for Small-Scale Analog Computation 

A. LINEAR SYSTEMS - NO FUNCTION GENERA­
TION OR MULTIPLICATION REQUIRED 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Falling body subject to gravitation-
al force, no air resistance (11). 

Falling body subject to a gravita­
tional force and subject to a resis­
tive force proportional to velocity(ll) 

Simulation of the action of a bounc­
ing ball (1, 10). 

Vibrations in a mass-spring-damper 
mechanical system (7, 10, 11). 

Forced vibrations in a mass-spring­
damper mechanical system (11). 

Vibrations in a mass-spring- damper 
system with elastic stops (6) 

Oscillations of a tuned torsional 
pendulum (1, 10). 

8. Modes of vibration of a cantilever 
beam subjected to tip displacement(13) 

9. Consecutive and reversible first­
order chemical reactions (14). 

10. Loading on a bridge caused by a 
vehicle (8). 

11. Mixing of chemical solutions in a 
series of well-stirred tanks. Exam­
ple shown is for two tanks (11). 

120 Simulation of an isothermal catalytic 
reactor with a first-order reaction 
and axial diffusion only. Steady 
state operation (7). 

13. Process dynamics of a shell and tube 
heat exchanger (16). 

14. Dynamics of a high speed adaptive 
control system (10). 

B. NONI·;1]~AR SYSTEMS - MULTIPLICATION 
AND lOR FUNCTION GENERATION REQUIRED. 

15. Falling body subject to a medium whose 
resistance is proportional to the 
square of the velocity (11). 

16. Trajectory of a bomb or artillery 
shell (1, 10). 

17. Trajectory of a long-range ballistic 
missile, including firing and ballis­
tic phases of programmed flight (10). 
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18. 

19. 

20. 

21. 

22. 

Vibrations in a mass-spring-damper 
system with a nonlinear spring constant 
and either elastic or inelastic stops(15) 

Composition in a well-stirred tank 
with different input and output com­
positions (11). 

Kinetics of a set of simultaneous 
and consecutive second-order reac­
tions (10). 

Simulation of a tubular reactor with 
a first-order reaction. Temperature 
and composition profile of reactor 
calculated vs. length (7). 

Simulation of the intake, exhaust 
and cylinder system of a reciprocat­
ing gas compressor (7, 10). 

23. Dynamic characteristics of a distilla­
tion column. Example shown is for 
three plates (7). 

240 Determination of the shape of the 
liquid zone in the zone-refining of 
metals or the shpae of unsupported 
liquid drops (13). 

25. Simulation of the pressure control 
in a pneumatic system (7). 

26. Automatic control of the temperature 
in a heat transfer process consisting 
of a well-mixed kettle and jacket (10). 

27. Automatic control of the output of a 
reaction process consisting of a well­
stirred reactor and a second order 
process (10). 

28. Automatic control of a shell and tube 
heat exchanger (16). 

29. Solution of Mathieu's equation, 
y + (a-2q cos 2t) = O. (17). 

30. Solution of Legendre's equation, 

y (1-t 2) -2t y + n (n+l)y = o. (6). 

31. Solution of van der Pol's Equation, 

x - A(1_x2) x + x = 0 
A = 0.6 (13)0 
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Company 

Dow Chemical Co. 
Midland Division 

Midland, Mich. 

Texas Division 
Freeport, Tex. 

E. I. du Pont de Nemours & Co. 
Newark, Del. 

Experimental Station 
Wilmington, Del. 

Monsanto Chemical Co. 
St. Louis, Mo. 

Ohio Oil Co. 
Denver, Colo. 

Humble Oil & Refining Co. 
Baytown, Tex. 

Baton Rouge, La. 

Esso Research & Engineering 
Co. 

Florham Park, N.J. 

American Oil Co. 
Whiting, Ind. 

Standard Oil Co. (Ohio) 
Cleveland, Ohio 

Union Carbide Olefins Co. 
South Charleston, W.Va. 

Thiokol Chemical Corp. 
Brigham City, Utah 

Phillips Petroleum Co. 
Bartlesville, Okla 

Chemstrand Corp. 
Decatur, Ala. 

Shell Oil Co. 
Shell Chemical Corp. 

New York, N.Y. 

Shell Development Co. 
Emeryville, Calif. 

Hercules Powder Co. 
Wilmington, Del. 

Daystrom, Inc. 
La Jolla, Calif. 

Year 
Acquired 

1954 
1961 

1956 
1961 

1950 
1955 
1958 
1960 
1960 

1957 
1958 
1959 

1957 

1960 
1961 
1959 
1960 

1959 
1959 
1960 

1960 

1955 
1957 

1955 
1957 
1961 

1956 
1958 

1959 

1959 

1959 
1960 

1960 

1960 

1956 
1957 
1960 
1960 

1960 

1960 

Number of 
Amplifiers 

20 
140 (on 
order) 

30 
80 (on 
order) 

30 
50 

120 
300 

70 

116 
24 
88 

56 

80 
80 
80 
40 

40 
40 

80 (enlarged 
unit) 

80 (enlarged 
unit) 

168 (enlarged 
unit) 

90 
10 

170 (enlarged 
unit) 

30 
60 (enlarged 

unit) 
60 

168 

80 
80 

80 

120 

24 
24 
10 
10 

44 

100 

Manufacturer 

Beckman (Berkeley) 
Electronic Associates 

Daystrom (Heath) 
Philbrick 

Beckman (Berkeley) 
Beckman (Berkeley) 
Electronic Associates 
Electronic Associates 
Computer Systems 

Electronic Associates 
Electronic Associates 
Electronic Associates 

Electronic Associates 

Electronic Associates 
Electronic Associates 
Electronic Associates 
Electronic Associates 

Electronic Associates 
Electronic Associates 
Electronic Associates 

Electronic Associates 

Electronic Associates 
Electronic Associates 

Beckman (Berkeley) 
Beckman (Berkeley) 
Beckman (Berkeley) 

Electronic Associates 
Electronic Associates 

Electronic Associates 

Electronic Associates 

Electronic Associates 
Electronic Associates 

Electronic Associates 

Electronic Associates 

Goodyear 
Goodyear 
Donner Scientific 
Donner Scientific 

Beckman (Berkeley) 

Computer Systems 

Table XIV-2 - Petro-Chemical Analog Computer Installations* 

*Chem. & Eng. News; 34; pg. 118; Feb., 1961 -356-



Table XIV-3: Analog Computer Facility in the Chemical Process Industry 

Computer Components 

Operational amplifiers 

Multiplication channels 

Instructional 
Use Only 

10-20 

1-2 

Function generation channels 1-2 

Operational relays 1-2 

Function switches 3 

Separate control consoles 1 

Plotting channels (x-y) 1 

Plotting channels (x-t) 2-4 

Repetitive operation yes 

Computer Personnel 

EE or ME (MS or equivalent.) 1 

ChE (MS or PH.D.) 

Computer repairmen 

Shop arrangement Open 

Instrumentation 
Response & Design 

15-50 

2-5 

2-6 

6 

6 

1 

1 

6 

if desired 

1-2 

1 

Open 

Control System 
Response; Some 
Process Dynamics 

40-100 

10-30 

5-10 

12 

12 

1-2 

3 

12 

if desired 

2-3 

2-3 

1-2 

As desired 

(Courtesy of Chemical Engineering, p. 121, February, 1960) 
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Complete 
Simulation of 
Chemical 
Process Systems' 

80-200+ 

50-100+ 

25-50+ 

25-50+ 

25-50+ 

2-3+ 

3-4+ 

18 

if desired 

3-6+ 

6-8+ 

2-3+ 

Closed 
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Finally, one should consider the operating positions of the computers. 
If it is likely that many large problems will be solved, the computers 
should be relatively close together. On the other hand, if several 
small problems are to be solved simultaneously, then the relative separa­
tion of computers is desirable to prevent operating personnel from disturb­
ing each other. 

E. Manpower 

Staff requirements will depend on the objectives of the facility and on its 
relation to other groups that may exist in the same organization. In many 
industrial organizations, the computer group functions as a service faci­
lity for many technical groups. It may simply take problems that are 
already formulated, perform specified operations on them and return the 
results to the originator. In other organizations, the members of the 
computer group begin work on a particular problem a considerable time before 
it reaches the computer, assist in formulating it, bring it to the computer, 
use the background gained to make the running efficient, assist in analyzing 
the result and may assist in writing a report. Another type of operation 
exists in some organizations where the computer is merely a tool available 
to each and every engineer; the only staff for the computer itself consists 
of maintenance personnel. 

On the assumption that members of the computer group will be active on 
problems, the following types of personnel are needed: 

1. Problem engineers. These should be graduate engineers or 
the equivalent. They should have a background in their in­
dustrial field adequate for understanding the range of 
problems encountered, and should be thoroughly familiar with 
the computer. 

2. Maintenance technicians. Men with prior service experience 
on analog computers are often difficult to find. In general, 
a few years experience in a field such as television or 
radar, together with a solid foundation of electronic fundament­
als, provide a man with an adequate background for computer 
maintenance. The number of technicians needed depends on 
many factors and is hard to estimate in advance; in an active 
facility, a useful approximation would be one technician per 
computer. If the maintenance group is large and has auxiliary 
duties such as design or evaluation of computer equipment, 
it may be headed by an engineer. 

3~ Secretarial help. 

4. Administrative help to handle business matters, library, per­
sonnel, supplies and auxiliary services. 

F. Computer Maintenance 

In modern, general-purpose analog computers, the majority of the computing 
units are of plug-in construction. This fact is of considerable importance 
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from the maintenance standpoint for, when a unit fails, it may be re­
placed very rapidly with a spare unit; the interruption to computer 
operation need only be very brief. The repair and check-out of repaired 
equipment is best accomplished using a "test rac~', which is a small 
computer designed for maintenance purposes only. Its use reduces inter­
ruption of computer operation; it is used simply to serve as a source 
of power and control for testing equipment. 

Very necessary to this concept, of course, is the establishment of a stock 
of spare units. The cost of the spares must be balanced against the value 
of the computational time lost after a failure if an immediate repair 
cannot be made. In addition, component parts necessary for possible 
repairs of these and any remaining units should be listed and accumulated 
insofar as possible. Repair of a malfunction within a unit may be accom­
plished in the shop after replacement. The repaired unit is tested and 
then becomes the new spare. 

To ensure that each equipment failure is followed up, and that information 
regarding such failures is available later for evaluation and action, 
it is important that adequate records be kept. For example, a procedure 
should be used whereby a detailed sheet follows the progress of the 
repair, including the substitution and the subsequent repair. Valuable, 
also, is a set of unit record cards which provides an historical picture 
of each unit: receipt, initial tests, repairs, routine tests, etc. It 
is recommended that testing of units on a routine basis be done without 
removing them from the computer. 

Additional maintenance comments are available in the literature (7). 

G. Preventive Maintenance 

To insure that analog computers are performing correctly at all times, 
and to minimize time lost due to component failures, a periodic check 
of individual components is recommended. The method and frequency of 
preventive maintenance checks required of each component normally can 
be obtained from its manufacturer. 

A typical preventive maintenance schedule for a 400 amplifier facility 
is shown in Table XIV-5 (8lj. 
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Table XIV- 5: Preventive Maintenance Schedule 

Equipment Frequency of 
Testing Wk. 

Amplifiers. . ... . . . . . . . . . .. 7 

Servo multipliers ........ 7 

Digital Voltmeters ....... 7 

Eight-channel recorders .. 7 

Power supplies ........... 7 

Varip1otters ............. 4 

Summing relays ........... 4 

Equipment Frequency 
Testing Wk. 

Stepping switches........ 4 

Refer~ncebalancc ........ 12 

Resistors. . . . . . . . . . . . . . .. 12 

Capacitors ............... 12 

Noise generator .......... 24 

Electronic multipliers ... 24 

Test instruments ......... 24 

(Courtesy of Chemical Engineering, p. 103, April 1963) 

As a result of implementing this schedule, a total of 99.6/" of the total 
scheduled computer hours was available over a four-year period. Prewired 
preventive maintenance patch panels also are effective in reducing mainten­
ance downtime. 
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APPENDIX A 

LAPLACE TRANSFORMS 

The Laplace Transform is a mathematical tool of great use in obtaining analytical 
solutions for linear systems. Its importance arises from the property that the 
ordinary differential equations which describe the system's dynamic behavior are 
transformed into algebraic relations which are much easier to solve. As analog 
computer users, we are not so much interested in the use of this mathematical 
technique but in its notation. The definition and table below demonstrate the 
notation. 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

00 

Definition: :e. ~(t~ = F(s) = te -st f(t)dt 

A 

t 

f(t) 

n-l t 
(n-l) ! 

at 
e 

sin at 

cos at 

df 
dt 

t 

f f(x)dx 
o 
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F(s) 

Als 

l/s2 

llsn n = 1,2, ... 

_I_ 
s-a 

1 
(s-a) n n = 1,2, ... 

a 
2 2 s + a 

s 
2 2 s + a 

sF (s) - f(o) 

n-l dn-l~ s~(s) - s f(o) - •.• - n-l 
dt t=o 

E..W. 
s 



f(t) 

11) t 
f f(t-x) g (x) dx F(s) G(s) 
0 

12) f(t-b), t~b e-bs F(s) 

o , t< b 

As an illustration, consider the equation 

y + 2 y + y = 0, y(o) = 1, y(o) = 0 

The transform of each term is taken individually as 

,;t, [:;; J = s2 Y(s) .. sy(o) - y(o) 

~ [YJ = s Y(o) - y(o) 

;t' [yJ = Y(s) 

Thus, we have 

or 
Y = ____ s__.,;+_.,;;;2;,....­

s2 + 25 + 1 

1 
= s + 1 + 

from which we obtain by numbers 4 and 5 

-t -t -t y(t) = e + te = (1 + t)e 
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A knowledge of Laplace transform techniques is helpful to the engineer using the 
analog computer because it permits the rapid analysis of almost all kinds of 
linear systems. This capability is an asset if simplified models of systems of 
interest are to be used as checks of computer solutions. Familiarity with 
transfer functions (see Chapter VI) and their corresponding computer circuits 
is often helpful in estimating the behavior of a system. 
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APPENDIX B 

TRANSFER FUNCTION CIRCUITS 

The purpose of this Appendix, which is subdivided into two tables, is to 
summarize a selected number of passive element and analog computer transfer 
function circuits. The selection of these circuits was determined by the fre­
quency of their occurence in practice, and by their ability to combine with each 
other to simulate more complex transfer functions. More extensive tables of this 
type are readily available in the open literature, and suitable references may 
be found in Chapter VI. . 

Table B-1 Analog Computer Transfer Function Circuits 

No. Bode Plot 

x 

I 0 ---------- Y - = X 
K 1" T 

x-----'"'" 

2 0 --------- Y - = I X K 
if 

,.,/ I -
T 

I 

Transfer 
Function 

K 
+ Ts 

A 

Ks 
+ Ts 

A 

B 
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Time 
Constants 

-y 

T = I -
A 

K = B 
A 

-y 

T = I -
A 

K = BT 

Gains 

A = I -
T 

B = !S-
T 

A = I -
T 

B =!S. 
T 



X---4 

3 0 -------- X. K(T2s + 1) 

X TIs + 1 1/\ K 
//r:z. 

4 o -------- X. _K(TI s + 1) 

X T2s + 1 
I~ 

~r, K 
I 

K _ X. 
(TIs + 1) (T2s + 1)- X 

5 o ----------
11T1 
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T1 

T2 
K 

Tl 

T2 

K = 

">---- -y 

= 1 A = B + 1/T2 
A-BC 

c-(~ = II (A-B) 
- BTIT2 1 

= T1D/T2 
D = K T2/T1 

= 1 A = I/T2 
A - B 

B - TI - T2 
= 1/A 

TIT2 
T2D 

C = 0 -
T1 

D = KT1 
--

T2 

>--.---y 

A = 11T1 

B = 1/T2 

C == K/T2 



x--...... ---1 -y 

I 

1/T1 KZ 
T1 l/A A o ------,-

y/X = s 

1/T2 

6 

(T1 s+l) (T
Z

s+1) T2 l/B B = K/T1T2 

K C/AB C = K/T1T2 ~ T1. 

x 

y -- -
X 

Ks K A 
T = l/~ 

A = K 

B == 1/T2 

7 

h 21B C 2h -
T 
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2 
K (8

TI + IL, K Ale A K.TI/Tz 
B = 1/T1 

8 X = 
T1 = lIB T2 8 2 + 2hT2s+1 

2 
X 2 

T2 = II BC C = T1/T2 
h = DT2/2 

D = 2h/T2 

- -

-
(T Z 8 

2 
+ 2h T 8 + 1) 

K = Ale A eK 9 X. K 1 1 1 = 
TI = 1/t{BE 

B = T2 _ 
X ;2s2 + 2 h T 8 + I 

2TI(h2TI-hIT2) 
2 2 2 

h = D -E 
I 2 "'BE 

e = Ti/T~ 
T = 1 

2 I./BCE 
D = 2h2/T2 

h = D 

h h ) 2 2,JECE E - 2(-1--1 
T2 TI 

-
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Table B-11 Passive Element Transfer Impedance Functions 

No. 
Transfer Impedance 

Network Parameter Relationships Function 
R 

1 E =K E --vvY--:J) K = R 
I 

-=-1 
E 

~ K/S 1/c 2 1 C K = 

E I I ~I 
3 

E 
K R K = R 

I = 
1 + TS E~I T RC = 

E 
4 I =K (1 + TS) E~ K = 2R 

R R 
I C -=-I T = RC 
- 2 -

E 
{1 + T 9 S 2 ~ 5 I ;:;K K = R1 + R2 

(1 + TS) Rl R2 T = R2C 
() <1 E /\/\r ~-. 

C I-.L 9 = R1 
r~ -=I R1 + R2 

! =K(l + TeS) K = R1 
6 A v 

I 1 + TS Rl T = (R1 + R2) C 
E~ .. ---j) 

9<1 R2 
I 

9 = 
-¥ 

d 
-=I R1 + R2 

R2 

E 
~,f\./'v 

K = 2RIR2 
7 -= 

K (1 + TS ) I 
1 + T9S E ----4 R2 ~-l) 2 Rl + R2 

9 < 1 ~ AR- 2R v.l v _I T = RIC 9 = 1 
::r:: C - -2-) 2R1 + -

K = 2Rl 
8 E 1 + TS E 

~'1' it 
1 = 1 + T9S Rl Rl T = (R2 + Rl) C 

R2 -=-r 2 
9 < 1 C I 9 = 2R2 -- 2R2 + R1 
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9 E _ 1 + TS ) 
1- K ( 1 + QTS 

Q < 1 

E K(1 + T2s) 
10 -

I-~(-1-+-T-1-S-::)~(~1:-;-+-;T;-3-:S) E 

11 E K (1 + TS) 
Y= TS2 

R R 

I 

T 
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K = 2R 

T = R (C 1 + C2) 2 

Q 2C 2 
C1 + C

2 

K = 2Rl + ~ 
-R2 

T3 = R1C2 T1 = R1C1 ; 

R R 
T2 = 1 2 (C

1 
+ C

2
) 

Rl+2R2 

K = 2 
C 

T = 2RC 



APPENDIX C 

DIODE ~ND RELAY CIRCUITS 

In simulating physical systems on the analog computer, it is frequently necessary 
to ~mpose constra~nts. such as absolute values, limits,' etc., on one or more computer 
variables. The purpose of this Appendix is to provide a surrnnary ~f selected diod'2 
and relay circuits which otcur most frequently in practice for imposing these con­
straints. In addition, circuit·s which describe unusual behavior, such as hyste­
resis, are also inc1uded o 

In this collection. of circuits," computer reference voltage level is .represented as 

eR• 
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I 
W ...... 
N 
I 

FUNCTION 

LIMITER 

DIODE CIRCUIT 

E. _____ K~ 
I 

">----..e_- Eo 

E' I 

leL 2 1 

H eR+leL21 
+eR 

FEEDBACK OR "SOFT
It 

LIMITER 

I:~ I 
R 

lEo I ~O.9IeRI 
R ~ lOOK 

BRIDGE OR "HARD" LIMITER 

RELAY CIRCUIT 

I 
+ 

II 

Table C-l: Selected Diode and Relay Circuits 

BEHAVIOR 

Eo 

ROUNDING DUE TO DIODE 
NON- LINEARITIES 



I 
LV 
-....J 
LV 
I 

FUNCTION 

BANG - BANG 

ABSOLUTE 
VALUE 

ZERO 
LIMITING 

DIODE CIRCUIT RELAY CIRCUIT 

+eR ell 
lel 2 1 6R 

eR+ lel~ -eR 

E.------t 
I >---Eo 

E· 1-+--..----1 

Tl--- Eo 

+ 

E.-..... -----I 

E· --------I 
I 

BEHAVIOR 

e - ___ r ____ _ 

II 

... 
-E. 

I 

el 
2 -------- --~ 

- DIODE CIRCUIT 

-- - RELAY CIRCUIT 

-----------~~~~----. , , , , , 
" , 

DIODE DROP - OCCURS IF 
DIODE 2 IS OMITTED 
REVERSE DIODES AND/OR 
CONTACTS FOR NEGATIVE 
INPUTS 
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FUNCTION 

DEAD 
;- SP.A~fi"~ 

H'{ST'ERESI$ 
OR 

~,BACKLASH 

DIODE CIRCUIT 

-e -e 
R R 

o 
k= e + a 

R 

E· I 

Eo 

RELAY CIRCUIT 

+ 
A IA 

A+eR~ 
+1 ~ 

~-

ei-...... --· 

II: 

BEHAVIOR 

b -0 

tt-- 20-., 
I I 
I I 



DIGITAL CIRCUIT 

A 

D A-B'" ···N 
II ANDII B t{> A·B······ N GATE 

N 

i=[] 
A+B+·····+N 

1I0RII lC> A+B+··· .. +N GATE 

S 
0 

FLlP- FLOP 

~ 
R 

Figure C-l: Analog Equivalent of Digital Logic Components 
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"A N 0" 
GATE 

"OR" 
GATE 

ANALOG CIRCUIT 

A·B······· N 

A·B ... ···N 

A" B+·······+ N 

A+B+········+N 

R--------~----------~ 

FLIP­
FLOP S---....... >-...... -0 

------------------+-0 

Figure C-l (Continued) 
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INPUTS AND OUTPUTS 
REPRESENT ± VOLT 
LEVELS 

IF 

REPRESENTS 
ZENER 
DIODE 

S IS HIGH 
Q IS HIGH 
o IS LOW 



4 
PERIOD FOR SYMETRICAL WAVE =K 

o 

VI 
K ---­

I - VI + eR 

IV!I K ---.,;.~~ 
2-\VI l+eR 

4~ 

+VI 

-VI 
I I 

I 
I 
I 

I I 

10 

K 
10 
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APPENDIX D 

SELECTED APPLICATIONS BIBLIOGRAPHY 

The following list of written material is categorized by both general and 
specific fields of applications. This is by no means a complete bibliography 
of material available. It is felt, however, that these references will, in 
turn, indicate other references of the type desired. 

General 

Rogers, A. E. and Connolly, T. W.: "Analog Computation in Engineering Design", 
McGraw-Hill Book Company, Inc., New York, 1960 

Jackson, A. S.: "Analog Computation", McGraw-Hill Book Company, Inc., New York, 
1960 

Fifer, S.: "Analogue Computation", McGraw-Hill Book Company, Inc., New York, 
1961 

Cheng, D. K.: "analysis of Linear System", Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1959 

Karplus, W .. J.: "Analog Simulation", McGraw-Hill Book Company, Inc., New York, 
1958 

Mathews, M. V. and Seifert, W. W.: "Transfer Function Synthesis with Computer 
Amplifiers and Passive Networks", Proc. 1955 Western Joint Computer 
Conference, (published by IRE, New York), 7-12 (March 1955) 

Heizer, L. E. and Abraham, S. J.: "Transfer Function Simulation by Means of 
Amplifiers and Potentiometers", J. Assoc. Compo Mach., 3 (3): 186 
(July 1956) 

Scott, N. R.: "Analog and Digital Computer Technology", McGraw-Hill, 1960 

Korn, G. A. and' Korn, T. M.: "Electronic Analog Computers", McGraw-Hill, 1956 

Johnson, C. L: "Analog Computer Techniques", McGraw-Hill, 1956 

Howe, R. M.: "Design Fundamentals of Analog Computer Components", Van Nostrand 
1961 

Aerodynamics 

"Aircraft Performance Studies on an Electronic Analog Computer", Wadel, L. B. 
and Wan, C. C.: Preceeding of the Western Joint Computer Conference, 
presented at Los Angeles, Mar~~ 1-3, 1955, p. 78 

"Human Pilot Dynamic Response in Flight and Simulator", Seckel, E.: I. A. M., 
McRuer, D. T., and Weir, D. H.: Wright Air Development Center, WADC 
Technical Report 57-520, August, 1958; ASTIA No. AD 130.988 



"Rigid. Body Equations of Motion for Use in Analog Computer Studies of Synunertrcal 
Spinning Missiles", Mangnall, J. J., Electronic Associates, Inc., Compu­
tation Center at Los Angeles, CCLA Report No.3, El Segundo, Calif., 
March 18, 1957 

Chemical and Industrial Engineering 

"Analog Computer Simulation of a Chemical Reactor", Batke, T. L., Franks, R. G., 
and James, E. W.: Instrument Society of America Journal, Vol. 4, January 
1957, p. 14, and Instrument Society of Amer Paper No. 56-7-2 

"Analog Simulation of a Chemical Reactor Temperature Control System", Mayer, F. X., 
and Spencer, E. H., 1960 Proceedings of Instrument Society of America 15th. 
Annual Instrument-Automation Conference and Exhibit, Vol. 15, pt. II, 
presented at New York, September 26-30, 1960, preprint No. 72-NY60, pp. 
72-NY60-l-72-NY60-9 

"Analog Computing in the Chemical and Petroleum Industries, Past and Present", 
Williams, T. J., Industrial and Engineering Chemistry, Vo •. 50, 1958, 
p. 1631 

"Analogical Computing Devices in the Petroleum Industry", Morris, W. L., 
Instrume3ts and Automation, Vol. 22, June 1949, p. 497 

"Modern Computer Analysis for the Design of Steel Mill Control Systems", Reider, 
J. E., and Spergel, P., Transactions of the American Institute of Elec­
tri.cal Engineers, Vol. 76, No. 31, July, 1957, pp. 105-109; discussion, 
pp. 109-110 

Control Systems 

"Analog Computer Applications in Predictor Design", Bates, M. R.,.Bock, D. H., 
and Powell, F. D., IRE Transactions on Electronic Computers, Vol. EC-6, 
No.3, September, 1957, p. 143 

"Optimization by Random Search on the Analog Computer", Munson, J. K., and Rubin, 
A. I., IRE Transactions on Electronic Computers, Vol. EC-6, No.3, 
September, 1957, p. 143 

"Analog Computer Study of Sampled Data Systems", Chestnut, H., Dabul, A., and 
Leiby, D., Proceedings of the Computers in Control Systems Converence, 
presented at Atlantic City, N. J., October 16-18,1957, p. 71, and 
General Electric Technical Information Series, Report 57GL35l, November 
15, 1957 

"Analysis of a Nonlinear Control System for Stabilizing a Missile", Atran, L., 
IRE Transactions on Automatic Control, Vol. PGAC-3, November, 1957, p. 8 

"Missile System Linearization", Favreau, R. R., Electronic Associates, Inc., 
Princeton Computation Center, PCC Report No. 69, Princeton, N. J., 
November 12, 1956 

"Analog Study of Boiler-Reactor Interaction", Borner, E. F., and Cassity, B. F., 
Nucleonics, Vol. 15, No.5, May, 1957, p. 84 
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"Modern Computer Analysis fo the Design of Steel Mill Control Systems", Reider, 
J. E., and Spergel, P., Transactions of the American Institute of 
Electrical Engineers, Vol. 76, Pt. II, No. 31, July, 1957, pp. 105-109; 
Discussion, pp. 109-110 

"Jet Engine Simulation for Engine Control Development Work", Sherrard, E. S., 
Proceedings of the National Simulation Council, presented at Washington, 
D. C., December 10-12, 1957, p. 15.0 

"Simulation of Linear Constant-Coefficient Systems by Weighting Function Technique", 
Byck, D. M., Electronic Associates, Inc., Computational Center at Los 
Angeles, PCC Report No. 91, El Segundo, California 

"Direct Measurement of Power Spectra by an Analog Computer", Wonnacott, T. H., 
National Research Council of Canada, Mechanical Engine'ering Report MK-5 
Ottawa, Canada, September, 1959; ASTIA No. 230 392 

"The Generation of Fourier Transforms and Coefficients on an Analogue Computer", 
Harbert, F. C., Electronic Engineering (London), Vol. 32, No. 390, 
August, 1960, pp. 496-498 

"A Multipurpose Electronic Switch for Analog Computer Simulation and Autocorrelations 
Applications", Diamentices, N. D., IRE Transactions on Electronic Computers, 
Vol. EC-5, No.4, December, 1956, p. 197 

"Analog Computer Applications in Predictor Design", Bates, M. R., Bock, D. H., 
and Powell, F. D., IRE Transactions on Electronic Computers, Vol. EC-6, 
No.3, September, 1957, p. 143 

"Evaluation of Complex Statistical Functions by an Analog Computer", Favreau, R. R., 
Low, H., and Pfeffer, I., 1956, IRE Convention Record, Vol. 4, pt. 4, 
March 19-22, 1956, p. 31 

"Random Optimization by Analog Techniques", Favreau, R. R., and Franks, R., 
Proceedings of the Second International Analogue Computation Meetings 
(Brussels), presented at Strasbourg, September 1-6, 1958, pp. 437-443 

"Transport Delay Simulation Circuits", Single, C. H., and Stubbs, G. S., Westing­
house Electric Corporation, Atomic Power Division, Report WAPDT-38 

"Analog Computer Mechanization of a Tilt-Wing VTOL Aircraft", Balsink, E. B., and 
Sovine, D. M., Wright Air Development Division, Air Research and Development 
Command, WADD Technical Note 59-344, Project 1365, Wright-Patterson Air 
Force Base, Ohio, July, 1960; ASTIA No. AD 246-530 

"Simulation of Military Vehicle Suspension Systems", Sattinger, I. J., and 
Therkelson, E. B., National Simulation Conference Proceedings, presented 
at Dallas, Texas, January 19-21, 1956, p. 1.1 

"Real-Time Automobile Simulation", Kohr, R. H., Proceedings of the Western Joint 
Computer Conference, presented at San Francisco, May 3-5, 1960, p. 285 

"Opera~ional Analog Simulation of the Vibration of a Beam and a Rectangular Multi­
cellular Structur", Clymer, A. B., IRE Transactions on Electronic Computers, 
Vo. EC-8 
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"Dynamic Analysis of an Aircraft Arresting Gear System", Hans, M. W., PACE Appli­
tion Bulletin, No.6, Electronic Associates, Inc., Long Branch, New Jersey. 

Electrical Engineering 

"Determination of Impulse Stresses Within Transformer Windings by Computers", 
McWhirter, J. H., Fahrnkopf, C. D., and Steel, J. H., Transactions of 
the American Institute of Electrical Engineers, Vol. 75, Pt. III, 1956, 
p. 1267. 

"The Use of Analogue Computers in Power System Studies", Van Ness, J. E., and 
Peterson, W. C., Transactions of the American Institute of Electrical 
Engineers, Vol. 75, pt. III, April, 1956, pp. 238-242. 

Electronics 

"Solutions of Partial Integral-Differential Equations of Electron Dynamics Using 
Analog Computers with Storage Devices", Wang, C. Co, Project Cyclone, 
Symposium II, April-May, 1952, p. 1630 

"Far Field Antenna Pattern Calculations by Means of a General Purpose Analog Com­
puter", Rubin, A .. E., and Landauer, J o P., Proceedings of the National 
Electronics Conference, Vol. 15, 1959, pp. 995-1011. 

"On the Solution of Sine Microwave Problems by an Analog Computer", Byck, D.M., 
and Norris, A., 1958 IRE WESCON Convention Record, Vol. 2, pt. 1, presented 
at Los Angeles, August 19-22, 1958, pp. 70-85, and Microwave Applications 
Seminar, Electronic Associates, Inc., Computation Center at Los Angeles, 
October 27-28, 1960. 

Fluid Mechanics 

"Analog Computer Construction of Conformal Maps in Fluid Dynamics", Tomlinson, N. P., 
Horowitz, Mo, and Reynolds, C. H., Journal of Applied Physics, Vol. 26, 
1955, p. 229. 

Bio-Engineering 

"A Study of the Mechanism of Pressure Wave Distortion by Arterial Walls Using an 
Electrical Analog", Warner, H. Ro , Circulation Research, Vol. 5, 1957, p. 22S 

"Analog Computer Aids Heart Ailment Diagnosis", Skinner, R. L., and Gehmlich, D. Ko , 

Electronics, Vol. 32, October 2, 1969, pp. 56-59. 

Tompkins, H. E., "A Survey of Computer Achievements in the Life Sciences and 
Medicine", IEEE Intern. Conv., New York, 26 March 1963 (about 250 items 
in bibliography). 

Empey, S. Lo, "Computer Applications in Medicine and the Biological Sciences: 
Bibliography", Comm. ACM, volo 6, No.4, April 1963, pp. 176-83. 
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ClYmer, A. Bo, "Accomplishments in Human Simulation", ASME Paper 60-AV-26, Aviation 
Conference, Callas, June 1960. 

Mangnall, J., itA Survey of Biomedical-Bioastronautic Applications", Western and 
Rocky Mountain Simulation Councils meeting, July 1962 (abstract in Instru­
ments and Control Systems, Dec. 1962, p. 125). 

Bellman, Ro E., Ed., "Mathematical Problems in the Biological Sciences", Proc. 14th 
Symp. in Applied Mathematics, Amer. Math. Soc., Providence, Ro I., 1962. 

Sinnnons, p. L., and Sinnnons, R. F., "The Simulation of Cognitive Processes", 
IRE Trans. on Elec. Comp., Sept. 1961, pp. 462-83, and Aug. 1962, pp. 
535-52. 

Enslein, K., "Digital and Analog Computation Considerations for Biomedical Prob­
lems," 1962 Rochester Conf. on Data Acqu. and Proc. in BioI. and Med o 

A bibliography is being prepared by Miss Josephine No Martin, Assoc. Ed., Medical 
ElectrO:Jllics News, 845 Ridge Ave., Pittsburgh 12, Pa., for publication. 

Physics 

"A Time-Sharing Analog Computer", Reihing, J. Vo , Jr., Proceedings of the Western 
Joint Computer Conference, presented at San Francisco, March 3-5, 1959, 
p. 341. 

"Analog Representation of Heat Exchange, Application to the Simulation of Heat 
Exchangers of Nuclear Power Plants", Carteron, J o M., and Deloux, G., 
Proceedings of the Computers in Control Systems Conference, presented 
at Atlantic City, New Jersey, October 16-18, 1957, p. 48. 

"Analog Simulation in Real-Time of Xenon Poisoning in a Nuclear Reactor", 
Goodyear Aircraft Corp., Report GER-749l, Akron, Ohio, April, 1956. 

Power Plant and Propulsion Systems Simulation 

"The Derivation of Simulators of Gas Turbine and Other Physical Systems for 
Experimental Data", Wolin, L., National Simulation Conference Proceed­
ings, presented at Dallas, Texas, January 19-21, 1956, p. 14.1. 

"A Method of Computing Eigenvectors and Eigenvalues on an Analog Computer", Neu­
stadt, L., Mathematical Tables and Other Aids to Computation, Vol. 13, 
No. 67, July, 1959, po 194. 

"A Use of Analog Computer in Antenna Pattern Studies", Branuner, Fo E., and Wen­
Hsiung Ko, Case Institute of Technology, Scientific Report No.6, AFCRC­
TN-59-579, Cleveland Ohio, October 27, 1959; ASTIA No. AD 227 2530 

"Plotting Results of a Quadratic Regression Analysis", Rubin, A. I., et. al., 
PACE Application Bulletin, No. 10, Electronic Associates, Inc., Long 
Branch, New Jersey. 

"The Use of Parameter Influence Coefficients in Computer Analysis of Dynamic 
Systems", Meissinger, H. F., Proceedings of the Western Joint Computer 
Conference, Presented at San Francisco, May 3-5, 1960, p. 181. 
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INDEX 

Absolute Value Circuit, 373 
Accuracy of Computer Results, 294 - 295 
Aircraft Problems, 296 - 317 

Arresting Gear, 296 - 317 
Computer Circuits, 312 

Algebraic Equations, Solution of, 160 - 162 
Circuits, 161 

Algebraci Loops Stability of, 161 - 162, 342 
Amplifier, 

Electronic Representation of, 25 
High Gain, 25 - 32 
Integrating, 28, 30, 36, 38, 293 
Stabilization of, 34 

Amplifier - Operational, 25, errors in, 292 - 293 
Scale Factors, 96 
Scaling, 99 
Summing, 25 - 27, 29, 99, 293 

Amplitude Scale Factor, 95 - 113 
Analog Computer, General-Purpose Electronic, 10 - 12, 16 - 83 

History of, 9, 13 - 14 
In Industry, ,12 - 14 
Operation, Principles of, 16 - 83 

Analog Laboratory Buildings, 350 - 361 
Equipment" 352 
Maintenance of, 359, 360 - 361 
Manpower, 352, 359 

Approximation.Pad{', 225 - 229, 233 - 240 
Arbitrary Function Generators, (See Function Generators) 
Attenuator, (See Potentiometers) 
Automobile Suspension System, 119 

Backlash, 
(See Hysteresis), 

Bibliography, 380 - 384 
Bode Plot, 195 - 196 
Boun~y Value Problem, 253 - 254 
Break Point (DEF) , 70 

Break Point Potentiometer, 71 
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INDEX (Con't) 

Checking, Accuracy and Precision, 290 
Computer Results, 291 
Problem Preparation, 260 - 278 

Characteristic Equation, 141 
Circuit, Check (DEF) 128, 132 - 134, 
Comparator Circuits, 75 
Computer Circuits, 

Algebraic Equations, 171 
From Scaled Equations, 98 - 113 
Eigenvalues and Eigenfunctions, 279 - 282 
Linear Ordinary Differential Equations, 85 - 87, 93 
Non-Linear Differential Equations, 152 - 157 
Partial Differential Equations, 284 
Simultaneous Differential Equations, 911 
Symbols for Diagrams, 31, 32, 43, 64 - 66, 
Transfer Function Simulation, 192 - 220, 365 - 370 

Coordinate Transformation, 59, 170 - 173, 257 - 259 
Euler Angle Technique, 189, 190, 
Polar to Rectangular, 59, 170 - 171, 185 - 186, 258 - 259 
Rectangular to Polar, 59, 170, 172 

Curve Follower, 71 - 73, 225 

Damping Ratio, 146 
D-C, Amplifier, (Also see Operational Amplifiers) 

Errors, 292 - 294 
Dead Time, 

(See Transport Delay), 
Deadzone, 177, 374 

(Also see Diode and Relay Circuits), 
Derivatives, 

Estimation of Magnitude of, 157 - 160 
Diagrams Block, 192, 194 
Difference Equations, 285 - 286 

(Also see Partial Differential Equations) 
Differential Equations, 135 - 157, 167 

First Order, 135 - 140 
Linear (See Linear Differential Equations), 
Non-Linear, 415, 152 - 157 
Ordinary, 90, 135 - 152 
Partial, 278 - 289 
Second Order, 140 - 146 
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INDEX (Con't) 

Differentiation, 217 - 219 
Digital Computer, 10, 11 
Diode Limiters, 51, 54 

Also See Diode and Relay Circuits, 
Discontinuities, 174 - 178 
Division, 45, 105 
Dry Friction, 176 circuit, 379 
Dynamic Check, 273 

Eigenfunctions, 280 - 282 
Eigenvalues, 279 - 282 
Errors, 285 - 286 

Static and Dynamic, 131, 288 - 295 
Exponential Function, 140 

(Also See Function Generation), 

Feedback Control, 215 - 217 
Finite Differences, 286 - 287 
Forcing Functions, 148 - 151 
Function Generation, Analytic, 163 - 191 

Exponentials, 161 
Hyderbolic, 161 
Natural Logarithms, 169 
Power series, 164 
Trigonometric, 161 

Function Generators, 51 - 74, 178 - 183, comparison of 181 - 183 
Diode, 51 - 54 
Tapped Potentiometers, 67, 69 

Gravity Pendulum, 152 - 154 

Heat Conduction, 2, 280 - 284 
Heat Transfer, 2, 280 - 284 
High Gain Amplifiers, 

(Also See Amplifiers, Operational), 
Higher Order Equations, Frequency of, 146 - 148, 159 
Hold, Mode, 35 - 37 

Relay, 35 - 37 
Hyderbolic Functions, Generation of, 

(See Function Generation), 
Hysteresis, 178 

Circuit, 178, 374, 378 

Idealized Diode, 51, 
Impedance, 200 - 205, 
Initial Conditions, 232 

Initial Condition Mode, 36 
Integral, 6 

Laplace, 191 
Integrating Amplifier, (See Amplifier) 
Integration, 106 - 108 
Integrator, Rate T~st, 41 
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INDEX (Conrt) 

Laboratory, (See Analog Laboratory), 
Laplace Transformations, 191 - 192 
Laplace Transforms, 191 - 192, 362 - 364 
Limiting Circuits, 174, 372 - 373 
Limiters, Feedback, 174 - 175 
Linear Albegraic Equations, 160 - 162 
Linear Analysis, 3, 135 - 151 
Linear Differential Equations, 3, 84 - 87, 135 - 151 

With Constant Coefficients, 84 - 87, 135 - 138 
With Varing Coefficients, 151 
Homogeneous, 138 - 148 
Non-Homogeneous, 148 - 149 

Linearization of Equations, 3, 155 - 157 
Loading Effects, 

Potentiometers, (See Potentiometers) 
Servo Multiplier, (See Multiplier) 

Magnitude Scaling, (See Scaling) 
Model Building, 1, 3, 86 
Mode Control, 36, 242 - 243 
Multipliers Electronic, 44 - 46, 50, 55 - 57, 104 
Multipliers, Servo, 46 - 4~J 

N3t~ral Frequency, 146 
Networks (See R. C. NetworKs), 
Non-Linear Systems, 152 - 157 
Non-Linear Phenomena Simulation, 

Absolute Value, (See Absolute Value Circuit), 
Backlash, (See Hysteresis) 
Dead Space, 177 

Operate, 36 
Operate, - Reset Modes, 36 
Operational Amplifier, 

(See Amplifier Operational), 
Output Devices and Recorders, 34, 
Overload Characteristics of Amplifiers, 34 

Pade' Approximation, 225 - 229, 233 - 240 
(See also Transport Delay), 

Partial Differential Equations, 2, 3, 279 - 287 
Passive Networks, 197 - 198, 201 - 205 
Patch Panel, 76 - 78, 268 
Pendulum, 152 - 154 
Pneumatic Controller, 215 - 217 
Pot Set, 36 - 38, 269 
Potentiometers, 22 - 25, 101, 11"2 

Loading, 23, 24 
Power Requirements, 358 
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INDEX (Con't) 

Problem Check, (DEF) 128, 128 - 132 
Problem Preparation, 260 - 278 

Preliminary Investigation, 261 - 262 
Procedure, Checking, 128 - 134 
Scaling, 263 
Statement of Problem, 260 - 261 

Programming, Principles, 84 - 135 
Procedure, 90 - 95 

Quarter Square Multipliers, (See multipliers) 

Rate Test, 36, 41 
R. C. Circuits, 201 - 205 
R~ad-out. Equipment, 79 - 83, 245 - 247 
Recorder, 81 - 82 
Relay Circuits, 225 
Repetitive Operation, 35, 82, 241 - 247 
Repetitive Solutions, 255 - 257 
Reset-Mode, 36 
Reset Relay, 36 
Resolver, 58 - 67 

Scale Factors, 96 
Scaled Equations, 98 - 113 
Scaling, Checks of, 262 (Also See Static Check) 

Time, 113 - 116, 233, 263 
Magnitude, 95 - 113, 157 - 160 

Separation of Variables, 279 
Servo Multipliers, (See Multipliers), 
Sine-Cosine Potentiometers, 60 - 62 
Slope Potentiometer, 71 
Square Root Circuit, 45 
Static Check, 127 - 135, 267 - 269, 272 - 273 
Summing Amplifier, (See Amplifier Operational), 

Tapped Potentiometer, 67 - 69 
Track-Store, 249 - 252 

Units, 249 - 250 
Techniques, 251 - 252 

Transfer Functions, 191 - 220 
Simulation of, 207 - 220 

Transport Delays, 220 - 240 
Derivation of, 239 - 240 

Tunnel Diode Switching circuit, problem, 332 - 349 

Undamped Natural Frequency, 
(See Natural Frequency), 

Vehicle Suspension, 91 
Voltage Scaling, 97 

Wave Equation, 279 

Zone - Refining Process, 318 - 331 
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